(4)

Vík í Mýrdal- Sjávarflóð Mat á sjóvörnum og hættu á sjávarflóðum

Bryndís Tryggvadóttir
Sigurður Sigurðarson
Fannar Gíslason
Útgáfa A - Ágúst 2020

Helstu niðurstöður

Suðurströnd Íslands er eitt útsettasta strandsvæð̀ heims. Í aftökum ná grunnbrot öldu út á meira en 20 m dýpi. Upp við ströndina eru öldur dýpisháðar og pví spila allir pættir, sem hafa áhrif á sjávarhæð, mikilvægt hlutverk fyrir pað hve há alda nær upp ad̃ ströndinni. Pví hærri sem sjávarstað̃an er, pví hærri alda kemur upp ađ ströndinni og pví meiri er hættan á sjávarflóđum. Auk stjarnfræðilegra sjávarfalla hafa ýmsir veðurfarslegir pættir áhrif. Par er átt við áhlaðanda vegna lægri loftprýstings, vindáhlað̃andi pegar vindur blæs upp að strönd og að lokum ölduáhlað̃andi innan brimgarðs. Samspil og samlíkur pessara pátta, sem ađ hluta til eru hádir og að hluta til óháđir, er nokkuð flókið að meta. Hér verð̛ur beitt nýlegum líkindafræðilegum aðferðum við mat á flóðahættu.

Sandströndin framan viđ Vík er langt frá pví ađ̛ vera stöðugt fyrirbæri, enda á hún sér ekki langa sögu. Talið er ađ̃ hún hafi byrjað að myndast í Kötluhlaupum á 17. öld. Viđ upphaf 20. aldar var ströndin mjög rýr en í framhaldi af Kötlugosinu 1918 gekk ströndin fram í um 50 ár, að međaltali um 10 m á ári. Eftir 1970 byrjar ströndin að hopa og er rofið af sömu stærðargráðu og uppbyggingin áđur eđ̃ um 8 til 10 m á ári. Árið 1994 var skilgreind varnarlína fyrir byggðina í Vík, rof strandarinnar skildi ekki ná inn fyrir pá línu, og byggð̌ur á henni flóð̌varnargarður. Upp úr aldamótum pegar rof strandarinnar fór ađ̃ nálgast varnarlínuna var hafinn undirbúningur ađ rofvörnum. Í fyrstu var ætlunin ađ byggja sjóvarnir langs eftir ströndinni en međ auknum skilningi á sandflutningum var ákveđiđ ađ verja ströndina međ sandföngurum pvert á ströndina. Árið 2011 var fyrsti sandfangarinn byggður við Víkurá og sá næsti framan viđ iðnaðarhverfið austast í porpinu árið 2017. Nokkur ár liðu áður en sandur fór að safnast vestan við fyrri sandfangarann en síðan hefur par byggst upp mikil og breið fjara. Enn ber ekki mikið á uppbyggingu strandarinnar vestan viđ seinni sandfangarann, en grunnbrot öldu benda til pess að par sé ađgrunnt og pví ætti ströndin par ađ fara ađ ganga fram.

Síđastliđinn vetur mátti sjá ummerki um landrof á svæðinu milli sandfangaranna og pá flæddi ítrekað yfir flóđvarnargarðinn sem byggður var árið 1994, mest í febrúar 2020 pegar flæddi inn á starfstöð Vegagerðarinnar og fleiri fyrirtækja á svæðinu. Pá er skemmst ađ minnast flóða og landbrots í desember 2015 áđur en seinni sandfangarinn var byggður.

Til ađ meta endurkomutíma sjávarflóða er myndað stórt gagnasafn aftakaatburða sem byggist á fjörtíu ára sögulegri tímaröð spágagna evrópsku veðurstofunnar (ECMWF) um öldu- og veðurfar af hafsvæð̊inu utan við Vík. Gögnin voru notuð bæði fyrir greiningu sjávarhæðar á tímabilinu og sem inntak í hermilíkan sem færir öldugögn af hafi, upp ađ ströndinni framan við Vík. Líkaniđ̛ gefur möguleika á að meta endurkomutíma sögulegra flóðaatburða međ peim hætti að yfirfæra pá yfir í reiknađ̃a ágjöf yfir flóðvarnargarðinn í Vík.

Í skýrslunni er fjallað um æskilega hæð tvenns konar varnarmannvirkja. Annars vegar flóðvarnargarð̊s svipaður beim sem fyrir er og hins vegar sjóvarnargarððs viđ̌ veg sem liggur eftir fjörunni. Tilgangur pess fyrrnefnda, flóðvarnargarðsins, er að koma í veg fyrir ađ mikið flæði inn á landið innan viđ̛ garðinn pannig að tjón eđa ópægindi hljótist af. par miđast kröfur um hæð garðs við međalágjöf yfir ákveðin tíma. Tilgangur bess síđarnefnda, sjóvarnargarð̊s viđ veg, er ađ takmarka ágjöf inn á veginn pannig að̛ umferð stafi ekki hætta af. Í pví tilfelli eru settar kröfur um að ágjöf stakrar öldu fari ekki yfir ákveđin mörk.

Aðferðafræðinni með stóra gagnasafnið er síđan beitt til að leggja mat á pað hve mikið parf að hækka flóð- og sjóvarnargarðana pannig að ágjöf yfir bá verði innan ákveðinna viðmiðunarmarka.

Til ađ ágjöf yfir flóđvarnargarð í árlegum flóđaatburði verði innan viđ $5 \mathrm{l} / \mathrm{s} / \mathrm{m}$ parf ađ hækka flóðvarnargarðinn um 0,5 mi +7,6 m hæð SH2020. Sú hækkun kemur ekki í veg fyrir ágjöf yfir garðinn en dregur verulega úr ágjöfinni og pví óöryggi sem pví fylgir ađ sjór gangi á land.

Fyrir veg sem liggur meðfram ströndinni og varinn er af sjóvarnargarði pá eru gerðar pær kröfur að mesta ágjöf stakrar öldu fari ekki yfir $2000 \mathrm{l} / \mathrm{m}$ í veðri sem að̃ jafnaði kemur ekki tíðar en á um 50 til 100 ára fresti. Til að uppfylla pessa kröfu parf hæð sjóvarnarinnar að vera í um +9,0 m SH2O20.

Efnisyfirlit

Helstu niðurstöður i
Efnisyfirlit iii
1 Inngangur 1
2 Hæðarkerfi og sjávarföll 4
3 Sjávarhæð 5
3.1 Loftprýstingsáhlaðandi 5
3.2 Vindáhlað̃andi 6
3.3 Ölduáhlaðandi 7
3.4 Hækkun sjávarstöðu vegna hnattrænnar hlýnunar 7
4 Hermun aftaka atburða 9
4.1 Afmörkun óháđ̛ra aftaka atburða. 10
4.2 Hermun byggt samlíkum 11
4.3 Safn aftaka atburða flutt upp að ströndinni 14
4.4 Samanburður kenniöldu í punktum P1, P2, P3 og P4 15
4.5 Endurkomutími sjávarhæðar og öldu upp viđ ströndina 16
5 Mat á upprennsli og ágjöf yfir flóð̌varnargarðinn í Vík 19
5.1 Hæð 2\% upprennslis. 19
5.2 Meðalágjöf og mesta ágjöf yfir flóðvarnargarð̌inn 20
5.3 Við̀mið̛unarkröfur fyrir ágjöf samkvæmt EurOtop 2018. 22
6 Reiknuð ágjöf og upprennsli i í pekktum atburðum. 24
6.1 Veturinn 2019-2020 24
6.2 Desember 2015. 25
6.3 Janúar 1990 26
6.4 Áhrifapættir í pekktum flóðaatburðum 26
7 Æskileg hæð flóðvarnargarðs og sjóvarnar við veg 28
7.1 Flóðvarnargarður 28
7.2 Sjóvarnargarður við veg 29
8 Tilvitnanir. 31

1 Inngangur

Vík í Mýrdal er stað̌sett á sữurströnd Íslands sem er eitt útsettasta strandsvæði í heiminum. Sandströndin framan viđ Vík er hvorki stöðug né á hún sér langa sögu. Talið er að̛ fjaran hafi byrjað að myndast í Kötluhlaupum á 17. öld. Við upphaf 20. aldar var fjaran mjög rýr og jafnframt átti sér stað töluvert rof. Eftir Kötlugosið 1918 gekk fjaran fram í um 50 ár, ađ meðaltali um eina 10 m á ári. Fjaran er breiðust um 1970 en eftir pað byrjar rof af svipaðri stærðargráðu og uppbyggingin var áður, eđa um 8 til 10 m rof á ári. Árið 1994 voru með aðferðum strandsvæðastjórnunar skilgreindar varnar- og eftirlitslínur framan við byggðina í Vík, Mynd 1. Gert var rád fyrir að bygging varanlegra varna hæfist pegar rofið næði eftirlitslínunni. Fyrsti áfangi strandvarna við Vík var bygging flóðvarnargarðs á varnarlínunni árið 1994, Mynd 2, sjá samantekt Sigurðar og fl. 2018, Vik í Mýrdal, sjávarrof og ađgerðir til ađ verjast pví.

Mynd 1 Skilgreining á varnarlínu, eftirlitslínu og áhættusvæðum úr skýrslu Fjarhitunar fyrir Vita- og hafnamálastofnun, Skipulag rikisins og Við̆lagatryggingu Íslands frá 1994. Síđ̃ar var varnarlínan færð utar framan viđ áhættusvæði 1, iðnaðarsvæðið austast í byggðinni.

Fylgst var međ rofinu og begar kom fram yfir aldamótin var pað̃ farið að̛ nálgast eftirlitslínuna verulega og ađ̛ hluta til komið inn fyrir hana. Til ad sporna gegn landrofinu hafa tveir sandfangar verið byggðir við Vík. Sá fyrri um 300 m langur sandfangari pvert á ströndina var byggður við ósa Víkurár árið 2011. Si̊đari sandfangarinn um 220 m langur einnig pvert á strönd var byggður tæplega 800 m austar árið 2017.

Framan við Vik eru öldudrifnir sandflutningar til austurs sem valda rofi strandarinnar. Sandflutningur til vesturs safnast saman austan viđ Reynisfjall. Pví virka sandfangarar á Vík í Mýrdal bannig að peir eiga ađ safna sandi vestan viđ sig, b.e. að hindra sandflutning til austurs, en stöðva ekki rof austan viđ sig.

Mynd 2 Flóðvarnargarður neðan við byggð̃na í Vík byggður sumarið 1995. Parna er enn langt frá fjörukambi ađ̛ flóðavörn. Úr Sjóvarnarskýrslu Vita- og hafnamálastofnunar frá 1995.

Fyrstu árin eftir byggingu fyrri sandfangarans safnaðist takmarkað magn sands fyrir í fjörunni ofansjávar milli garðsins og Reynisfjalls. Hins vegar var stutt í grynningar eins og sjá mátti á brjótandi öldum par fyrir framan. Eftir pað fór ströndin að hlaðast upp og sumarið 2017 var komið pað mikið efni inn á svæðið milli fyrri sandfangarans og Reynisfjalls að næstum var hægt að ganga á purru út að garðsenda vestan við sandfangarann.

Eins og búist var við pá hélt rofið áfram austan garðsins pó að tímabundið gæti par hlaðist upp sandur eftir langvarandi suðaustan áttir. Í desember 2015 gerði mikið flóð og stóđst fjörukamburinn vestan sandfangarans fyllilega stórviðrisáhlaupið og sannaði að hægt er að verja porpið fyrir ágangi sjávar. Austan sandfangarans að húsi Vegagerðarinnar gekk hins vegar mikið á. Sjór gekk yfir graslendið sem byggst hafði upp á síðustu áratugum. Rofið í grjóðurpekjuna austan sandfangarans mældist mest um 37 m.

Í framhaldi af pessum atburði var seinni sandfangarinn byggður árið 2017. Eins og međ pann fyrri hefur orðið bið á pví að sandur safnist fyrir á svæðið milli sandfangaranna tveggja. Hins vegar virðist vera tiltölulega grunnt fyrir framan svæðið milli peirra eins og kemur fram á myndum af öldubrotum sem eru skýr merki um að sandsöfnun á sér stað á svæðinu.

Prátt fyrir tilkomu sandfangaranna mátti eftir veturinn 2019 til 2020 sjá ummerki um landrof milli sandfangaranna. Um veturinn flæddi yfir flóðvarnargarðinn frá 1994 og inná vinnusvæði starfstöðvar Vegagerðarinnar og annarra fyrirtækja á svæðinu. Tilkynningar bárust að ítrekað hafi flætt yfir flóðvarnargarðinn dagana 15. og 22. febrúar á pessu ári. Sömuleiðis er pað ofarlega í minni manna að pað hafi einnig flætt yfir garðinn dagana 7. og 30. desember 2015.

Međ pessar forsendur í huga var ákveđið að leggja mat á ágæti flóðvarnargarðsins og hve líklegt og mikið pað gefi yfir hann á gefnu tímabili. Samhliða pví var lagt mat á hve mikið pyrfti að hækka garðinn til að takmarka ágjöf yfir hann. Niđurstöður á mati á nauðsynlegri hæð á varnargarði við Vík í Mýrdal nýtist einnig fyrir veghönnun á fyrirhuguđum nýjum bjóđvegi 1 á svæðinu. En mikilvægt er að fjölfarinn vegur líkt og bjóđvegur 1 sé vel varinn fyrir ágangi sjávar og pví nauðsynlegt að æskileg sjóvörn sé til staðar við veginn.

Mynd 3 Ströndin framan við Vík 14. mars 2015. Um miðjan daginn mældist hæð kenniöldu á Surtseyjardufli um 10 m og bá ná öldubrotin austan Reynisfjalls út á tæplega 20 m dýpi. (Ljósmynd Pórir Níels Kjartansson)

2 Hæðัarkerfi og sjávarföll

Í flestum bæjarfélögum landsins hafa í gegnum tíđina verið notuð fleiri en eitt hæðarkerfi par sem pau gegna mismunandi tilgangi. Í bæjarfélögum viđ sjó voru yfirleitt til bæði bæjarkerfi og hafnar- eđa sjókerfi, par sem „núlliđ" í bæjarkerfum átti yfirleitt að miđast viđ meðalsjávarhæð en í hafnar- eđ̃a sjókerfum var „núllið" sett í um 0,1 til 0,2 m neđ̃n við međalstórstraumsfjöruborð. Kerfin voru yfirleitt stað̌bundin og bá byggði ákvörðun peirra á misgóđum upplýsingum um sjávarföll.

Í stað bæjarkerfa er nú víđast hvar notað eitt samhæft hæðarkerfi ISH2OO4 sem ákvarðað er af Landmælingum Íslands og miđast við meðalsjávarhæð. Hafnar- eða sjókerfin geta hins vegar ekki verið samhæfð fyrir allt landið par sem pau taka mið af sjávarföllum sem eru mismunandi eftir landshlutum.

Í Vík hafa verið notuđ nokkuð mörg hæðarkerfi, sum eru kennd við bæjarfélagið, önnur viđ gamla landshæðarkerfið og enn önnur við sjóinn. Fram til pessa hefur ákvörðun á sjókerfunum ekki byggt á nægjanlega góðum upplýsingum og pau ekki verið rétt ákvörðuð miðað við að̃ „núllið́ eigi ađ vera rétt neđan viđ međalstórstraumsfjöruborð. Í sambandi viđ pá vinnu sem hér er gerð grein fyrir hefur verið skilgreint nýtt sjóhæðarkerfi, kallað SH2O2O. Pað byggir á stjarnfræðilegum sjávarfallastuðlum fyrir hnitið $63^{\circ} \mathrm{N} 19^{\circ} \mathrm{V}$ sem fengnir eru úr albjóðlegum grunni yfir stjarnfræðilega sjávarfalla stuð̌la sem er hluti af MIKE21 hugbúnað̃arsvítunni.

Tafla 1 gefur hæð hæðarpunktsins 11402, bolti í klöpp vestan kirkju, og sjávarföllin í Víkí tveimur hæðarkerfum, ISH2OO4 sem miðast viđ meðalsjávarhæð og SH2O20 sem miðast við sjávarföllin.

Tafla 1 Hæðarkerfi og sjávarföll í Vík í Mýrdal

		Sjávarföll ákvörðuð með stjarnfræðilegum stuðlum	ISH2004 hæðarkerfi	SH2020 hæðarkerfi
Hæðarpunktur 11402			$+34,643$	$+36,067$
Međalstórstraumsflóð	MSTFL	MSH+(M2+S2+K2)	$+1,276$	$+2,700$
Međalsmástraumsflóð	MSMFL	MSH+(M2-S2)	$+0,513$	$+1,937$
Meðalsjávarhæð	MSH	MSH	0,000	$+1,424$
Meðalsmástraumsfjara	MSMFJ	MSH-(M2-S2)	$-0,513$	$+0,911$
Međalstórstraumsfjara	MSRFJ	MSH-(M2+S2+K2)	$-1,276$	$+0,148$
Sjókortanúll		MSH-(M2+S2+N2+O1)	$-1,424$	0,000

3 Sjávarhæð

Sjávarhæð á hverjum tíma er samspil ýmissa pátta. Stærst vega stjarnfræðileg sjávarföll sem stafa af ađdráttarafli tungls, sólar og reikistjarna. Sjávarföllin ráðast af gangi himintunglanna og eru pví fyrir fram bekkt og gefin út í sjávarfallatöflum. Á degi hverjum fara tvær sjávarfallabylgjur umhverfis landið og pegar ađdráttarafl tungls og sólar leggjast saman er stórstreymt en smástreymt pegar tungl og sól toga pvert á hvort annað. Mat á hæð stjarnfræðilegra sjávarfalla er gefið í kaflanum hér á undan, tafla 1.

Auk stjarnfræðilegra sjávarfalla hafa ýmsir veðurfarslegir pættir áhrif sem leggjast ofan á sjávarföllin, svokallaður áhlaðandi. Greint er á milli áhlaðanda af prennskonar uppruna. Fyrst ber að nefna áhlaðanda vegna loftprýstings, í lágum loftprýstingi hækkar yfirborð sjávar en lækkar á móti pegar loftprýstingur er hærri. Vindáhlađandi myndast pegar vindur blæs yfir haffletinum, lítið par sem er aðdjúpt en meira par sem grynningar ná langt út. Vindhraði og lengd ađdrags hafa áhrif á stærð hans en bó er dýpi stærsti áhrifapátturinn par sem vindáhlaðandi verður yfirleitt ekki mikill nema að pað sé aðgrunnt og grynningar nái langt út. Að síðustu ber að nefna ölduáhlaðanda. Hann myndast upp við land par sem öldur brotna á grynningum utan strandar og ađstæður haga pví pannig til að sjór á ekki greiđa leiđ út til hliđar við grunnbrotin.

3.1 Loftprýstingsáhlaðandi

Mat á loftprýstingsáhlaðanda byggist á líkingu um hækkun sjávarhæðar vegna breytinga á loftprýstingi, loftprýstingsáhlaðandi er ákveðinn stuðull margfaldaður með breytingu loftprýstings frá međalloftprýstingi. Pegar loftprýstingur er lágur hækkar sjávarborð en lækkar pegar loftprýstingur er hár. Eðlisfræðin segir að í stöðugu ástandi hækki sjávarborð um 1 cm við fall á loftprýstingi um 1 hPa , sem svarar til að stuđullinn sé 1,0.

Dreifirit loftprýstings og áhlaðanda

Mynd 4 Dreifirit loftprýstings ECMWF gagna og áhlað̃anda úr sjávarfallalíkani Vegagerðarinnar árin 2012-2020

Loftprýstingsáhlað̃andi nær hins vegar sjaldnast að verða stöðugt ástand. Lægðir hreyfast yfir haffletinum og með peim eins konar „bóla" á haffletinum undir miđju lægðarinnar. Takmörk eru á pví hve hratt „bólan" getur myndast og hvað gerist pegar lægðin gengur á land eð̌a fer af landi út á sjó. Pví er fyrrnefndur stuđull yfirleitt lægri en 1,0. Ólafur og Páll (1991) unnu úr sjávarfallamælingum í Reykjavík og ákvörðuđu stuđ̃ulinn par 0,84. Engar sjávarfallamælingar eru til frá Vík og ekki hefur veriđ gerð greining á pessum stuðli viđ suđurströndina.

Hér er pví farin sú leið að bera saman reiknaðan áhlaðanda í sjávarfallalíkani Vegagerðarinnar við loftprýstingsgögn frá ECMWF. Niðurstöðuna má sjá á Error! Reference source not found. sem gefur 0,92 cm hækkun sjávarborðs fyrir fall á loftprýstingi um 1 hPa frá međalloftprýstingi 1012,9 hPa. Petta er heldur hærri stuđull en Ólafur og Páll fundu fyrir Reykjavík og pví líklega á öruggu hliðinni fyrir pá greiningu sem pessi skýrsla miðar að.

3.2 Vindáhlaðandi

Vindáhlađandi sjávar var áætlaður út frá jöfnu Bretschneider hér fyrir neđan par sem U er vindhraði, h er dýpi sjávar og L er lengd dýpis.

$$
S_{w}=3 \cdot 10^{-6} \cdot U^{2} \cdot L \cdot \frac{\ln \left(\frac{h_{1}}{h_{2}}\right)}{g\left(h_{1}-h_{2}\right)}
$$

Dýpi sjávar og lengd dýpis byggist á dýptarmælingum Landhelgisgæslunnar en dýptarkort af hafsvæðinu sunnan viđ Vík í Mýrdal má sjá á Mynd 5Error! Reference source not found.. Svæðinu sunnan viđ Vík er skipt í prjá hluta eđa geira eftir pví úr hvađa átt vindurinn blæs eins og sjá má á vindáttahringnum á myndinni. Prjú pversniđ af sjávarbotninum eru notuđ, eitt fyrir hvern hluta, pá er vindáhlaðandi t.d. fyrir vind með stefnu $113^{\circ}-158^{\circ}$ reiknaður međ pversniði sjávarbotns í 135°. Dýpi og lengd sjávarbotns fyrir hvert pversniđ má sjá í töflu 2 . Ef vindátt er utan bilsins $113^{\circ}-225^{\circ}$ er vindáhlaðandi metinn sem enginn. Mesti vindáhlaðandi sem metinn er í hermda gagnasafninu nær 27 cm vegna vinds úr suðvestanátt, en af peim atburðum sem hafa vindáhlaðanda pá er 10% međ yfir $11 \mathrm{~cm} \mathrm{og} 2 \%$ yfir 13 cm í vindáhlaðanda.

Mynd 5 Dýptarkort af ströndinni við Vík í Mýrdal sem notað var til að meta vindáhlað̃anda. Af kortavefsjá íslenskra sjókorta Landhelgisgæslunnar og Landmælinga Íslands.

Tafla 2. Lengd svæða međ̃ dýpi á bilinu 5 til 75 m, fyrir prjá stefnugeira framan viđ Vík, notað við mat á vindáhlað́anda.

Vindátt:	$113^{\circ}-158^{\circ}$		1580-203 ${ }^{\circ}$		203 ${ }^{\circ}-225^{\circ}$	
$\begin{aligned} & \text { Dýpi } \\ & {[\mathbf{m}]} \end{aligned}$	Fjarlægд frá landi [m]	Lengd dýpis [m]	Fjarlægð frá landi [m]	Lengd dýpis [m]	Fjarlægд frá landi [m]	Lengd dýpis [m]
-75	10250	2000	7750	3750	7500	1250
-50	8250	4000	4000	1000	6250	1750
-30	4250	1000	3000	250	4500	250
-20	3250	1750	2750	1250	4250	1500
-10	1500	750	1500	750	2750	1750
-5	750	750	750	750	1000	1000

3.3 Ölduáhlað̃andi

Ölduáhlað̃andi er sá hluti sjávarhæðar sem verður til vegna mikils öldugangs, áhlaðandinn er staðbundinn og getur breyst mikið á milli nærliggjandi svæða. Hæð pessa áhlaðanda byggist helst á lengd öldu, hæð hennar og halla strandar en með auknum halla strandar, lengri og hærri öldum verður ölduáhlað̃andi meiri. Mat á ölduáhlađanda er vandmeðffarið og ekki eru til margar heimildir ađ slikt hefur verið gert við strendur Íslands, pví var notast við aðferð sem Yoshimi Goda setti fram í priðju útgáfu af Random seas and design of matitime structures sem gefin var út 2010 og er 33. bindi í Advanced Series on Ocean Engineering seríunni. Aðferðin byggist á niðurstöđum úr PEGBIS líkaninu sem hermir eftir handahófskenndum öldum úr mismunandi áttum sem var hannað af Y.Goda sjálfum. Pá er lagt fram að̃ meta megi ölduáhlaðanda með eftirfarandi jöfnu:

$$
\frac{\zeta_{\theta_{0}=0}}{H_{0}}=0,0063+0,768 s-(0,0083+0,011 s) \cdot \ln \left(\frac{H_{0}}{L_{0}}\right)+(0,00372+0,0184 s) \cdot\left(\ln \left(\frac{H_{0}}{L_{0}}\right)\right)^{2}
$$

par sem $\zeta_{\theta_{0}=0}$ er ölduáhlað̃andi óháđur stefnu, H_{0} er hæð kenniöldu við 10 m dýpi, L_{0} er lengd öldu og s er halli strandar.
Ölduáhlað̃andi er einnig háður stefnu öldunnar en áhrif öldustefnu á áhlaðandann má meta með eftirfarandi jöfnu:

$$
\zeta=\zeta_{\theta_{0}=0}\left(\cos \theta_{0}\right)^{0,545+0,038 \ln \left(\frac{H_{0}}{L_{0}}\right)}
$$

par sem θ_{0} er stefna kenniöldu vio 10 m dýpi.

3.4 Hækkun sjávarstöðu vegna hnattrænnar hlýnunar

Hækkun sjávarstöđu vegna gróđurhúsaáhrifa er óneytanleg staðreynd sem byggist á niðurstöðum rannsókna Millirikjanefndar Sameinuðu pjóðanna um loftlagsgreytingar (IPCC). Međalhækkun sjávar á heimsvísu á tímabilinu 1901 -2010 er metin 0,19 m af IPCC par sem međalhækkun frá 1993 til 2010 hafi verið svo mikið sem $3,2 \mathrm{~mm}$ /ári. Með pessu áframhaldi er líklegt ađ međalhækkun sjávar á heimsvísu verði um $26-82 \mathrm{~cm}$ fyrir árið 2100 . Útpensla vegna hlýnun sjávar stuđlar ađ hækkun yfirborơi sjávar en aukið vökvamagn vegna bráđnun jökla er helsti orsakavaldur hærra sjávaryfirborð̊s. Bráð̃nun jökla hefur einnig í för međ sér breytingar á byngdarsviđ̌i næst jöklunum sem dregur úr hækkun sjávar á nærliggjandi svæði. Dví má búast við pví að hækkun sjávar við Íslandsstrendur stafi helst af bráðnun Suðurskautslandsins á meðan bráðnun Grænlandsjökuls mun hafa minni áhrif. Samkvæmt skýrslu Veðurstofunnar um Loftlagsbreytingar og áhrif peirra á Ísland sem byggist á skýrslu IPCC má búast viđ pví að
hækkun sjávarstöðu við Íslandsstrendur verði um 30-40\% af hækkun meðalsjávarstöðu sem svarar til $8-33 \mathrm{~cm}$ hækkunar. Óvissumörkin eru bó rífleg pví bráðnun íss á Grænlandi og Suđurskautslandi hefur rádandi áhrif á hækkun sjávar við Ísland, aukið massatap á Suðurskautslandinu gæti bætt tugum sentimetra við hækkun hér við land.

Landhæðabreytingar hafa einnig áhrif á stöðu sjávar og má pví nefna að samkvæmt skýrslu Veđurstofunnar má búast viđ $20-40 \mathrm{~cm}$ hækkun á landhæð á Suđurlandi vegna jarð̊skorpuhreyfinga. Jafnframt kemur fram í skýrslunni ađ̛ á Suđ̛urlandi er hlutfallsleg hækkun vegna loftslagsbreytinga um 30-32\% af hnattrænni hækkun. Í heild má búast við ađ breytingar á sjávarstöðu við Vík til loka aldarinnar verði allt frá 25 cm lækkun í 12 cm hækkun.

Miđđð viđ aðrra pætti sem hafa áhrif á sjávarhæð eins og áhlað̃anda vegna loftprýstings og öldu, pá eru líklegar breytingar á sjávarstöðu við Vík vegna loftslagsbreytinga og jarð̌skorpuhreyfinga frekar litlar.

Fyrir flóđvarnargarð sem byggð̃ur er til nokkurra áratuga og hægt er að breyta hönnunarforsendum í eđlilegu viđ̋haldi, bá er auđ̃velt ađ takast á viđ óvissu um framtíđorbróun međalsjávarhæðar. Fyrir nýjan veg við ströndina og jarđogöng sem byggð eru til lengri tíma parf hins vegar ađ̛ gæta fyllsta öryggis.

4 Hermun aftaka atburða

Sem mat á virkni núverandi sjóvarnar og innlegg í hönnun sjóvarna á svæðinu var myndað stórt gagnasafn af aftakaatburðum sem byggist á 40 ára sögulegri tímaröð öldu- og veðurspágagna frá svæðinu. Notast var við spágögn međ einnar klukkustundar tímaskrefi frá evrópsku veðurstofunni ECMWF frá árunum 1979 til 2020 í hniti $63,0^{\circ} \mathrm{N} 19,0^{\circ} \mathrm{V}$, sem er á hafsvæðinu sunnan við Vík í Mýrdal, sjá Mynd 6. Spágögnin innihalda vindhraða, vindstefnu, hæð kenniöldu, sveiflutíma og stefnu kenniöldu auk loftprýstings við sjávaryfirborð, en hann var notaður til að meta áhlaðanda vegna loftprýstings. Að auki var notast við tímaröð fyrir stjarnfræðileg sjávarföll við suðurströnd Íslands sem reiknuð er út frá stjarnfræðilegum stuðlum í MIKE frá DHI.

Mynd 6 Úthafsspápunktur evrópsku veđurstofunnar ECMWF $63,0^{\circ} \mathrm{N} 19,0^{\circ} \mathrm{V}$ fyrir veđur- og haffræð̋ileg gögn sýndur međ rauð̃gulri stjörnu (Tekið̃ af kortavefsjá íslenskra sjókort Landhelgisgæslunnar og Landmælinga İslands).

Úr tímaröðinni voru einangraðir tæplega 2000 óháðir atburðir og peir notaðir til að útbúa gagnasafn međ 350.000 óháðum atburðum par sem í pað minnsta ein af ofangreindum breytum er í hærra lagi. Gagnasafnið var útbúið með pví að nota aðferðina „Multivariate extreme value modelling" (B. Gouldby, 2014). Par er notast við óháða atburði til að herma pær breytur sem stuðla að aftaka atburðum. Aðferðin varðveitir pá fylgni sem er milli breytanna í útgildum. Atburðirnir eru síðan færðir upp að ströndinni međ öldulíkaninu MIKE 21 SW og svokölluðu Meta Model, sem er ekki öldulíkan en hermir eftir niðurstöðum MIKE og sparar pví keyrslutíma verulega. Sem hluti af næmnigreiningu voru atburðirnir færðir upp að ströndinni í 4 punkta á um 7 m dýpi sunnan við sandfangarana í Vík í Mýrdal, sjá Mynd 7. Samanburður á endurkomutíma kenniöldu í pessum fjórum punktum má sjá á Mynd 13 í kafla 4.5.

Mynd $7 \quad$ Stađ̌setning punkta á grunnslóđ, á 7 m dy̌pi utan viđ sandfangarana viơ Vík í Mýrdal. Tekiơ af Google Earth í apríl 2020.

4.1 Afmörkun óháðra aftaka atburða

Tryggja parf að atburðirnir, sem notaðir eru úr tímaröðinni til að herma eftir, séu óháðir aftaka atburðir. Pá er átt við að ekki séu notuð tvö eđa fleiri tímaskref úr sama flóðaatburðinum. Pannig eru óháðir aftaka atburðir afmarkaðir í 40 ára langri tímaröđinni međ peim hætti að fyrst eru valdir toppar á hæð kenniöldu, sjávarhæð og vindhraða sem eru yfir ákveðnum pröskuldsgildum. Úr pví gagnasafni eru síðan valdir toppar út frá hæð kenniöldu og vindhraða međ í pað minnsta 24 klukkustunda millibili en allir toppar á sjávarhæð eru valdir. Pröskuldsgildið fyrir hæð kenniöldu á hafi er 6 m , fyrir sjávarhæð $+1,5 \mathrm{~m}$ og $18 \mathrm{~m} / \mathrm{s}$ fyrir vindhrađa. Afmörkunin skilar 1868 óháðum atburðum sem notaðir eru til að herma 350.000 óháða aftakaatburði, sjá Mynd 8.

Mynd 8. Tímaröð hæð kenniöldu (efst), sjávarhæð (miđ) og vindhraða (neđst). Tímaröðin er af-bjöppuđ í óháđa atburði út frá hæð kenniöldu (rauđir), sjávarhæð (grænir) og vindhraða(bláir).

4.2 Hermun byggt samlíkum

Hermun gagna er tvípætt, annars vegar er Multivariate Extreme Value Modelling notað til að herma 350.000 gildi af hæð kenniöldu, vindhraða og loftprýstingsáhlaðanda. Hins vegar að nota hermdu gildin af pessum prem páttum til ađ herma hinar breyturnar út frá sambandi sínu við pá pætti sem pegar hafa verið hermdir.

Til að byrja með er General Pareto líkindadreifingin aðlöguð að afmörkuðu óháðu atburðunum, sjá Mynd 9. Líkurnar fyrir gildi sem eru fyrir ofan 80\% eru færð yfir á Gumbel skala með pví að taka tvöfaldan neikvæðan logra af líkunum, $Y_{i}=-\log \left(-\log \left(f_{i}\right)\right)$. Par sem f eru líkur fyrir viðeigandi gildi í einum af prem breytum sem verið er að herma hverju sinni, s.s. i.

Líkindadreifing atburð̃a

Mynd 9. Líkindadreifing (rauð) og General Pareto dreifing (blá) fyrir hæð kenniöldu (efst), loftprýstingsáhlað̃anda (mið) og vindhraða (neðst) byggt á óháðum atburðir úr 40 ára tímaröðinni

Multivariate extreme value modelling byggist á pví að nota jöfnuhneppi til að líkja eftir sambandi milli hæð kenniöldu, vinhraða og loftprýstingsáhlaðanda, sbr jöfnuna hér fyrir neđan.

$$
\boldsymbol{Y}_{-i} \mid Y_{i}=\boldsymbol{a} Y_{i}+Y_{i}^{\boldsymbol{b}} \boldsymbol{W}
$$

Par sem \boldsymbol{Y}_{-i} eru Y gildin fyrir bær tvær breytur sem skal herma og Y_{i} er skilyrða breytan sem hermt er útfrá. Pá er \boldsymbol{a} fasti á bilinu $] 0,1[, b$ er fasti á bilinu]-1, $1[$ og W eru leifar sem fylgja normaldreifingu. Jöfnuhneppið er leyst sérstaklega par sem hver breyta er skilyrða breytan með most likelihood method undir pví skilyrði að Y_{i} sé í topp 20\%. Pegar búið er að leysa jöfnuhneppið er pað notað með Monte Carlo aðferð til að herma 350.000 atburði par sem neðangreind fjögur skref eru endurtekin par til fjölda atburða er náð.

1. Handahófskennt gildi af Y_{i} er valið, gefið að pað sé í topp 20%,
2. Handahófskennt gildi af \boldsymbol{W} er valið út frá međaltali og staðalfráviki sem fundið var pegar jöfnuhneppið var leyst.
3. $\quad \boldsymbol{Y}_{-i}$ eru reiknaðar út frá jöfnu (1) međ W úr skrefi 2 og viđeigandi a og b.
4. Breyta Y aftur yfir íf og nota General Pareto dreifinguna til ađ fá viđeigandi gildi.

Pessi ađferð skilar pá 350.000 óháðum atburðum par sem í pað minnsta ein af breytunum inniheldur hátt gildi. Mynd 10 sýnir samanburð líkindadreifingu á peim prem breytum sem hermdar voru međ Monte Carlo aðferðinni og óháðu atburðanna sem Multivariate Extreme Value Modelling er byggð á.

Mynd 10. Samanburður líkindadreifinga óháðra atburða (blár og rauđ̛ur) og hermunar (grænn) fyrir hæð kenniöldu (efst), loftprýstingsáhlaðanda (mið) og vindhrað̃a (neđst).

Pær breytur sem eftir sitja, p.e.a.s. öldustefna, sveiflutími kenniöldu, vindstefna og stjarnfræðileg sjávarföll eru byggðar á sambandi sínu við pær prjár breytur sem voru hermdar međ Monte Carlo aðferðinni. Pá er öldustefna og sveiflutími byggð á hæð kenniöldu, vindstefna er byggð á vindhraða og stjarnfræðileg sjávarföll byggð á loftprýstingsáhlađanda og árstíma.

Á Mynd 11 má sjá samanburð dreifingu peirra 1868 óháðra atburða úr 40 ára tímaröðinni (rauđir punktar) og hermun 350.000 óháðra aftaka atburða út frá peim (bláir punktar). Hermdu atburðirnir fylgja dreifingu aftaka atburðanna úr tímaröðinni ađ mestu leiti auk pess sem hærri útgildi fást. Petta gagnasafn af 350.000 hermdum aftaka atburðum var síðan flutt af hafi og inn að fjörunni utan við Vík í peim tilgangi að nota pá við mat á upprennsli og nauðsynlegri hæð sjóvarnar mannvirkja.

Mynd 11. Dreifing 350.000 óháð̛ra aftaka atburða úr hermuninni (blá) borin saman við dreifingu óháðra aftaka atburða úr 40 ára tímaröðinni (rauð).

4.3 Safn aftaka atburða flutt upp að ströndinni

Til ađ sjá hvernig atburðirnir hegð̃a sér við fjöruna hjá Vík í Mýrdal eru peir færðir af hafi, úr hnitinu $63,0^{\circ} \mathrm{N} 19,0^{\circ} \mathrm{V}$ upp að ströndinni í punkt á 7 m dýpi sunnan viơ fjöruna í Vík. Vegagerðin notar öldulíkanið MIKE 21 SW til að flytja ölduatburði úr úthafspunkti á hafi og upp að ströndinni. Hér er MIKE öldulíkanið notað saman með Meta Model aðferð sem byggir á Radial Basis falli til að færa alla 350.000 aftakaatburðina ađ ströndinni í punkt á 7 m dýpi sunnan viđ Vík í Mýrdal. Pessar tvær aðferðir eru notaðar saman pví óraunhæft er að reikna alla 350.000 atburðina í öldulíkaninu vegna of langs reiknitíma. Pess í stað eru 500 hönnunaratburðir valdir úr hermda gagnasafninu sem eru lýsandi hvernig punktaskýið hegðar sér og peir eru keyrðir í MIKE 21 SW. Niðurstöðurnar úr keyrslunni eru svo setta inn í Meta Model ásamt hönnunaratburðunum til að greina sambandið milli atburða í hnitinu $63,0^{\circ} \mathrm{N} 19,0^{\circ} \mathrm{V}$ og ípunktinum á 7 m dýpi sunnan við Vík. Niđurstöđurnar fyrir punktinn milli sandfangarna (P3) má sjá á Mynd 12. NError! Reference source not found.ær eins punktaský fengust í punktunum P1, P2 og P4. Frekari lýsing á Meta Model aððferðinni og Multivariate Extreme Value Modelling má finna i i Mat á aftaka sjávarflóðum: Innleiðing aðferða sem byggist á samlíkum útgilda (Bryndís Tryggvadóttir, 2020). Gögnin voru færð að fjórum stöðum við fjöruna í Vík í Mýrdal, sjá Mynd 7. Staðirnir eru fyrir framan sitt hvorn sandfangarann (P2 og P4), mitt á milli sandfangarana (P3) og vestan viơ vestari sandfangarann (P1), allir á 7 m dýpi likt og áđur kom fram.

Milli sandfangara, -7m dýpi

Mynd 12 Vind- og haffræðileg gögn í á 7m dýpi sunnan milli sandfangaranna (P3) í Vík í Mýrdal. Hönnunaratburðir (rauđ̃ir) voru fluttir inn upp að ströndinni međ Mike21 SW 21 öldulíkani en allt stóra gagnasafnið (blátt) var flutt inn ađ ströndinni međ Meta Model sem byggist á hönnunaratburðunum.

4.4 Samanburður kenniöldu í punktum P1, P2, P3 og P4

Sem næmnigreining fyrir punktana fjögurra á 7 m dýpi framan við Vík sem hermda gagnasafnið var útbúið fyrir, var endurkomutími kenniöldu í punktunum borinn saman. Líkt og sést á Mynd 13 pá er hæsta kennialdan fyrir framan eystri sandfangarann (P4) en lægst er kennialdan í punktinum vestast, næst Reynisfjalli (P1). Fyrir ákveđinn endurkomutíma er mesti munur milli punkta P1 og P4 um 0,5 m. Pessi munur samsvarar hins vegar aðeins til tæplega 7 cm munar á ölduáhlað̃anda, sem er hverfandi hækkun pegar litiđ er til dýpisháđar kenniöldu. Pví er óparfi ađ meta ágjöf yfir sjóvörnina frá mörgum stöðum á grunnslóð innan pess svæðis sem er til athugunar. Í pessu verkefni var valið að nota niðurstöður fyrir punkt P3 sem er úti fyrir svæðinu milli sandfangaranna tveggja.

Mynd 13 Samanburður á endurkomutíma kenniöldu vid 7 m dýpi í 4 skilgreindum punktum utan Vikur.

4.5 Endurkomutími sjávarhæðar og öldu upp við ströndina

Lagt var mat á ölduáhlaðanda og vindáhlað̃anda hermda gagnasafnsins fyrir punkt P3 (milli sandfangaranna) með aðferðum lýst í kafla 3.

Sem hluti af næmnigreiningu var lagt mat á ölduáhlaðanda fyrir fjóra mismunandi halla á ströndinni ($1 / 50,1 / 75,1 / 100$ og $1 / 200$). Endurkomutími ölduáhlaðanda fyrir hvern halla má sjá á Mynd 14. Par sést að̃ með auknum halla, brattari strandfleti, verður ölduáhlað̃ndi meiri. Halli strandar utan viđ Vík er breytilegur eftir dýpi. Utan við 10m dýpi er hallinn nálægt 1/200, við 10 m dýpið er hann u.p.b.1/100 og nær ströndinni fer hann nær 1/75 til 1/50. Notast verður viđ̛ međalhalla á ströndinni svo hallinn $1 / 100$ verður notaður við mat á ölduáhlaðanda viđ vík. Í töflu 3 má finna hæð prýstings-, vind- og ölduáhlađ̃anda með 1, 10, 100 og 1000 ára endurkomutíma. Hæð pessa áhlaðanda byggist á útreikningum sem finna má í kafla 3 og hermda gagnasafninu.

Tafla 3 Prýstings-, öldu- og vindáhlað̃andi með 1, 10, 100 og 1000 ára endurkomutíma byggt á hermda gagnasafninu og 1/100 halla strandar

Endurkomutimi	Prýstings- áhlađ̃andi $[\mathbf{c m}]$	Ölduáhlaðandi $[\mathbf{c m}]$	Vindáhlað̃andi $[\mathbf{c m}]$
1ár	54	65	1
10 ár	72	75	13
100 ár	86	82	20
$\mathbf{1 0 0 0 ~ a ́ r ~}$	89	94	25

Vík - Endurkomutími ölduáhlað̃anda

Mynd 14 Líkindadreifing ölduáhlađanda byggt á hermda gagnasafninu og mismunandi halla strandar, $1 / 200,1 / 100,1 / 75$ og 1/50

Lagt var mat á endurkomutíma sjávarhæðar sem samanstendur af stjarnfræðilegri sjávarhæð, prýstingsáhlað̃anda, vindáhlaðanda og ölduáhlaðanda líkt og er fjallað um í undirköflunum hér á undan. Niðurstöðurnar má sjá á Mynd 15 og í töflu 4 par sem sjávarhæð er gefin upp í hæðakerfi SH2O20. Par sem vindáhlaðandi er lítill verður lítill munur á líkindadreifingunni með loftprýstingsáhlað̃anda einum sér eða með vindáhlað̃anda. Ölduáhlaðandinn hefur hins vegar áhrif og pegar honum er bætt við veldur pað um 0,5 m hækkun á sjávarhæð að staðaldri.

Tafla 4 Endurkomutími sjávarhæðar med eđ̃a án áhlaðanda byggt á hermda gagnasafninu.

Endurkomutími [ár]	Með brýstingsáhlađanda	Sjávarhæd [m] Með vind- og brýstingsáhlađanda	Með vind-, öldu og prýstingsáhlađanda
$\mathbf{1}$	3,2	3,2	3,7
$\mathbf{1 0}$	3,4	3,4	4,0
$\mathbf{1 0 0}$	3,6	3,6	4,2
$\mathbf{1 0 0 0}$	3,7	3,7	4,4

Mynd 15 Líkindadreifing sjávarhæðar við Vik par sem teki̊ er tillit til sjávarhæðar með mismikinn áhlaðanda, í fyrsta lagi eingöngu með prýstingsáhlaðanda, pá međ prýstings- og vindáhlađ̃anda og ađ̃ lokum međ̃ prýstings-, vind- og ölduáhlað̃anda.

Upp við ströndina er ölduhæð takmörkuð af sjávardýpi, pað er kallað að ölduhæð sé dýpisháð. Pannig hefur pað áhrif á líkindadreifingu ölduhæðar hve mikill áhlaðandi er tekinn međ í reikningana. Mynd 16 sýnir líkindadreifingu kenniöldu viđ fjöruna í Vík fyrir sjávarhæð par sem tekið er tillit til áhlaðanda vegna prýstings, vinds og öldu. Par sést að hæð kenniöldu, H_{s}, međ 1 árs endurkomutíma er tæpir 2,2 m par sem tekið er tillit til sjávarhæðar með ofangreindum áhlaðanda. Sambærileg tala fyrir 10 ára endurkomutíma er $2,35 \mathrm{~m}$ og $2,5 \mathrm{~m}$ fyrir 100 ára endurkomutíma.

Mynd 16 Endurkomutími dýpisháđar kenniöldu, H_{s}, í fjöruborði framan við Vík í Mýrdal. Byggt á sjávarhæð međ vind-, öldu og prýstingsáhlađanda úr hermda gagnasafninu.

Með Multivariate Extreme Value Modelling aðferðinni hefur 40 ára sögulegri tímaröð af haf- og verðurfræðilegum gögnum verið notuð til að herma safn af 350.000 óháðum aftaka atburðum sem samsvara um 10.000 árum. Slíkt gagnasafn nýtist nú við mat á flóðatburðum og gefur möguleika að meta endurkomutíma peirra.

Við næmnigreiningu á punktum á grunnslóð kom fram að pað sé hverfandi munur á peim 4 punktum sem voru til athugunar á 7 m dýpi sunnan við fjöruna í Vík. Pví verður einungis notast við einn peirra, punkt P3 (milli sandfangaranna) til að meta flóðhættu í Vík í Mýrdal.

5 Mat á upprennsli og ágjöf yfir flóðvarnargarð̇inn í Vík

Í kaflanum hér á undan er fundin líkindadreifing öldu og sjávarhæðar upp viđ ströndina í Vík. Fyrir sjávarhæðina er litið til stjarnfræðilegra sjávarfalla auk áhlađ̃anda af völdum lágs loftprýstings, vindáhlað̃anda af völdum álandsvinds og ölduáhlað̃anda upp við ströndina. Á hafi er líkindadreifing öldu háð veðurkerfunum sem mynda ölduna en á grunnslóð er aldan dýpisháð. Pannig tvinnast saman sjávarhæð og ölduhæð upp viđ ströndina.
Í pessum kafla verður fjallað um áhrif pessa samspils öldu og sjávarhæðar upp við ströndina. Fyrst verður fjallað um upprennslishæð, sem er sú hæð sem hver stök alda nær eftir að hafa brotnað á sjávarströnd eđa sjóvarnarmannvirki. Áđur fyrr var hæð sjóvarnarmannvirkja miđuđ við 2% upprennslishæð, sem pýðir að upprennsli 98% alda á ákveðnu tímabili, t.d. hálftíma eða klukkutíma, en upprennsli 2% aldanna var jafnt eða hærra.

Si̛oan verður fjallað um ágjöf en pað er magn sjávar sem gefur yfir náttúrulega sjávarkamb eđ̃a sjóvarnarmannvirki. Nútildags miðast hönnun yfirleitt viđ að uppfylla kröfur um ađ ágjöf sé innan ákveðinna marka. Annars vegar er fjallað um meðalágjöf yfir ákveđið tímabil, t.d. hálfan eđa heilan klukkutíma, á hvern lengdarmetra strandar eđa mannvirkis á strönd. Hann mælist pá í einingunum $\mathrm{I} / \mathrm{s} / \mathrm{m}$ eða $\mathrm{m}^{3} / \mathrm{s} / \mathrm{m}$. Hins vegar er fjallað um mestu ágjöf, p.e. mestu ágjöf stakrar öldu á ákveð̌nu tímabili á hvern lengdarmetra. Hann mælist í einingunum $1 / \mathrm{m}$ eða $\mathrm{m}^{3} / \mathrm{m}$.

Við mat á hæð upprennslis og ágjöf yfir flóðvarnargarð voru notaðar aðferðir og jöfnur úr ágjafarleiðarvísinum EurOtop 2018. Hæð 2% upprennslis og ágjöf yfir flóðvarnargarðinn var reiknað fyrir hvern atburð í hermda gagnasafninu og endurkomutími metinn.

5.1 Hæð 2\% upprennslis

2% upprennslishæð er sú hæð í fjöru eđa á sjóvarnarmannvirki sem 2% af öldum ná upp í. Við mat á 2% upprennsli í fjörunni í Vík í Mýrdal var notast viđ jöfnur 5.1 í ágjafarleiðarvísinum EurOtop 2018. Par sem $R_{u 2 \%}$ er hæðin (í metrum) sem 2% af öldum ná upp í.

$$
R_{u 2 \%}=1,65 \cdot \gamma_{b} \cdot \gamma_{f} \cdot \gamma_{\beta} \cdot \xi_{m-1,0} \cdot H_{m 0}
$$

og að hámarki:

$$
R_{u 2 \%}=1,0 \cdot \gamma_{f} \cdot \gamma_{\beta} \cdot H_{m 0} \cdot\left(4-\frac{1,5}{\sqrt{\gamma_{b} \cdot \xi_{m-1,0}}}\right)
$$

Pá er $H_{m 0}$ hæð kenniöldu neđst í fjörunni, við hæðarlínu +0,0 mí hæðarkerfi SH2O20, γ_{f} er hrífni/ gleypnistuðull fiörunnar, γ_{β} er stuðull sem tekur tillit til pess ef alda kemur undir horni, γ_{b} er svokallaður bermustuðull sem tekur til áhrifa grjótbermu eđa stalls framan við eđa framan á sjóvarnarmannvirki og $\xi_{m-1,0}$ er brotstuđ̌ull sem byggist á halla fjörunnar, hæð kenniöldu og öldulengd á hafi ($L_{m-1,0}=g T_{m-1,0}^{2} /(2 \pi)$).

$$
\xi_{m-1,0}=\frac{\tan \alpha}{\left(H_{m 0} / L_{m-1,0}\right)^{1 / 2}}
$$

Landslagið sem sjórinn rennur yfir á bessu svæði er sandur og graslendi efst í fjörunni. Pví var hrífni/gleypnistuðullinn metinn sem 0,9. Eingöngu er tekið tillit til öldu sem lendir hornrétt á ströndinni og pví er gildið 1 notað fyrir γ_{β}, sömuleiðis er γ_{b} metinn sem 1 par sem um náttúrulega strönd er að ræða án grjótbermu eđ̃ stalls sem draga myndi úr upprennsli. Pá er halli strandar upp að flóđvarnargarðinum sem er í hæð +7,1 mí hæðakerfinu SH2O20 talinn vera um 1:8.

Mynd 17 og tafla 5 sýna endurkomutíma 2% upprennslis við eystri sandfangarann par sem tekið er tillit til allra priggja áhrifabátta áhlað̃anda á sjávarhæð. Par kemur fram ađ á hverju ári megi búast við að upprennsli nái upp í um $7,5 \mathrm{~m}$ hæð, í um $+8,4 \mathrm{~m}$ ađ̃ jafnađ̃i á 10 ára fresti og í um +9,1 m med 100 ára endurkomutíma.

Tafla 5 Upprennslishæð við eystri sandfangarann og endurkomutími hennar par sem tekið hefur verio tillit til allra priggja áhrifapátta áhlađ̃anda á sjávarhæð.

Endurkomutími	Upprennsli $[\mathbf{m}]$
$\mathbf{1 a ́ r}$	7,5
$\mathbf{1 0}$ ár	8,4
$\mathbf{1 0 0}$ ár	9,1
$\mathbf{1 0 0 0} \mathbf{a ́ r}$	9,6

Vik - Endurkomutimi 2\% Upprennslis

Mynd 17 Endurkomutími 2\% upprennslis við eystri sandfangarann bar sem tekiđ hefur verið tillit til allra priggja áhrifapátta áhlað̃anda á sjávarhæð.

5.2 Meðalágjöf og mesta ágjöf yfir flóðvarnargarðinn

Ágjöf hermda gagnasafnsins var metinn međ jöfnu 5.12 úr EurOtop 2018 ágjafarleið̌arvísinum, rituð hér fyrir neđan. Pessi jafna er notữ til að̃ meta ágjöf yfir frekar aflíđandi strönd. Lýsingar á breytunum í jöfnunni hér fyrir neđan má finna í kafla 5.1 hér á undan.

$$
\frac{q}{\sqrt{g \cdot H_{m 0}^{3}}}=\frac{0.026}{\sqrt{\tan \alpha}} \cdot \gamma_{b} \cdot \xi_{m-1.0} \cdot \exp \left[-\left(2.5 \frac{R_{c}}{\xi_{m-1.0} \cdot H_{m 0} \cdot \gamma_{b} \cdot \gamma_{f} \cdot \gamma_{\beta}}\right)^{1.3}\right]
$$

Mynd 18 sýnir líkindadreifingu međalágjafar yfir flóðvarnargarðinn í Vík par sem tekið hefur verið tillit til allra briggja áhrifapátta áhlaðanda á sjávarhæð.

Magn međalágjafar yfir núverandi flóðvarnargarð í hæð +7,1 m í hæðarkerfi SH2O2O með 1 árs, 10,100 og 1000 ára endurkomutíma er ad finna ítöflu 6. Par kemur fram ađ á hverju ári megi búast viđ međalágjöf upp á um $10 \mathrm{l} / \mathrm{s} / \mathrm{m}$ og ađ jafnađii um $130 \mathrm{l} / \mathrm{s} / \mathrm{m}$ á 100 ára fresti.

Mynd 18 Líkindadreifing meðalágjafar [l/s/m] yfir flóðvarnargarðinn í Vík með hæðina $+7,1 \mathrm{~m}$ SH2O20 par sem tekiđ̀ hefur veriđ̃ tillit til allra priggja áhrifapátta áhlađ̃anda á sjávarhæd.

Tafla 6 Endurkomutími međ̃áágjafar [$\mathrm{l} / \mathrm{s} / \mathrm{m}]$ yfir flóðvarnargarð̃inn í Vík međ hæðina +7,1 m SH2O20 par sem tekið hefur verio tillit til allra priggja áhrifapátta áhlað̃anda á sjávarhæd.

Endurkomutími	Ágjöf $[\mathbf{l} / \mathbf{s} / \mathbf{m}]$
1ár	10
$\mathbf{1 0}$ ár	50
100 ár	130
$\mathbf{1 0 0 0} \mathbf{\text { ár }}$	280

Mesta ágjöf einnar stakrar öldu var einnig reiknuð fyrir hvern atburð í hermda gagnasafninu par sem var einnig notast við jöfnur í ágjafarleiðavísinum EurOtop 2018. Mesta ágjöf einnar öldu byggist á mestri mögulegri međalágjöf (jafna 5.13 i EurOtop 2018):

$$
q=\sqrt{g \cdot H_{m 0}^{3}} \cdot 0.1035 \cdot \exp \left(-\left(1.35 \frac{R_{c}}{H_{m 0} \cdot \gamma_{f} \cdot \gamma_{\beta} \cdot \gamma^{*}}\right)^{1.3}\right)
$$

hlutfall fjölda alda á einni klukkustund og fjölda alda sem ná yfir varnargarðinn (jafna 6.3 í EurOtop 2018):

$$
P_{o v}=\frac{N_{o w}}{N_{w}}=\exp \left(-\left(\sqrt{-\ln 0.02} \frac{R_{c}}{R_{u, 2 \%}}\right)^{2}\right)
$$

og stư̊lunum a og b (jöfnur 6.17 og 6.18 í EurOtop 2018):

$$
a=\left(\frac{1}{\Gamma\left(1+\frac{1}{b}\right)}\right)\left(\frac{q T_{m}}{P_{o v}}\right)
$$

$$
b=0.85+1500\left(\frac{q}{q H_{m 0} T_{m-1,0}}\right)^{1.3} .
$$

Pá má reikna mestu ágjöf einnar stakrar öldu í $\mathrm{m}^{3} / \mathrm{m}$ eđa l / m međ jöfnu 4.6 í EurOtop 2018:

$$
V_{\max }=a \cdot\left(\ln \left(N_{o w}\right)\right)^{1 / b}
$$

Mynd 19 sýnir líkindadreifingu mestu ágjafar einnar öldu byggt á hermda gagnasafninu. Tafla 7 sýnir mestu ágjöf međ 1 árs, 10, 100 og 1000 ára endurkomutíma.

Tafla 7 Endurkomutími mestu ágjafar stakrar öldu [l/m] yfir flóđvarnar-garðinn í Vík bar sem tekið hefur verið tillit til allra priggja áhrifapátta áhlaðanda á sjávarhæð.

Endurkomutími	Ágjöf $[\mathbf{l} / \mathbf{m}]$
$\mathbf{1}$ ár	18.000
$\mathbf{1 0}$ ár	40.000
$\mathbf{1 0 0}$ ár	61.000
$\mathbf{1 0 0 0}$ ár	87.000

Mynd 19 Líkindadreifing mestu ágjafar stakrar öldu [$\mathrm{m}^{3} / \mathrm{m}$] yfir flóðvarnar-garðinn í Vík par sem tekið hefur verið tillit til allra priggja áhrifapátta áhlaðanda á sjávarhæð. Ath. lóđrétti kvarơinn á myndinni er m^{3} /m en umfjöllun um ágjöf í skýrslunni er íl/m.

5.3 Viðmiðunarkröfur fyrir ágjöf samkvæmt EurOtop 2018.

Ágjafarleiðarvísirinn EurOtop 2018 setur fram viðmiðunarkröfur fyrir ágjöf við margskonar aðstæður. Annars vegar eru settar viðmiðunarkröfur fyrir meðalágjöf og hins vegar fyrir mestu ágjöf. Par sem um er að ræða flóðahættu er eðlilegt að miđa við međalágjöf yfir ákveđið tímabil, en par sem um er að ræða hættu fyrir fótgangandi eða akandi umferð er hins vegar réttara að miđa við mestu ágjöf á stakri öldu.
Í EurOtop 2018 leiðarvísinum eru ýmsar kröfur settar fram um međalágjöf yfir flóðvarnargarða. Pað fer allt eftir aðstæðum, hvort fólki eða byggingum stafi hætta af og hvort hætta sé á að garðurinn sjálfur skemmist. Fyrir aðstæður sem líkastar eru aðstæðum í Vík eru settar fram viðmiðunarkröfur á bilinu 5 til $10 \mathrm{l} / \mathrm{s} / \mathrm{m}$. Pað fer síðan eftir eðli afleiðinga pess að ágjöfin fari yfir pessi mörk við hvaða endurkomutíma er miðað.

Viðmiðunarkröfur fyrir akandi umferð innan við sjóvarnargarð samkvæmt EurOtop ágjafarleiđarvísinum eru gefin í töflu 8. Leifileg međalágjöf er háð ölduhæð fyrir framan sjóvarnargarðinn. Par sem alda framan við garðinn er hærri eru kröfur um međalágjöf strangari en par sem ölduhæð er lægri. Kröfur til mestu ágjafar eru hins vegar pær sömu óháð öldu framan
við sjóvarnargarð. Petta er rökrétt par sem pað er mesta ágjöfin eða stærsta gusan sem er ákvarðandi. Pannig parf að hanna sjóvörn við fyrirhugaðan veg við ströndina í Vík pannig að mesta ágjöf, stærstu gusur, verði ekki meira en $2000 \mathrm{l} / \mathrm{m}$. Pað skal jafnframt tekið fram að gusa af pessari stærðargráðu er töluvert stór og getur pví verið hættuleg fyrir akandi umferð. Pví parf hönnun að miðast við að endurkomutími slíks atburðar verði nokkuð hár.

Samkvæmt Mynd 19 pá er endurkomutími ágjafar yfir núverandi flóðvarnargarð sem nemur 2000 l/m um 0,5 ár, p.e. slíkur atburður á sér ađ jafnaði stað tvisvar á ári. Hönnunarkröfur fyrir veg sem lægi međfram ströndinni og varinn væri með sjóvarnargarði ættu hins vegar að vera miðað við atburð með endurkomutíma um 50 eða 100 ár.

Tafla 8 Við̃miðunarkröfur fyrir meðalágjöf og mestu ágjöf fyrir akandi umferơ innan við sjóvarnargarð samkvæmt EurOtop 2018.

Hæd kenniöldu, $\mathbf{H}_{\mathbf{m} 0}[\mathbf{m}]$	Međalágjöf $[\mathbf{l} / \mathbf{s} / \mathbf{m}]$	Mesta ágjöf $[\mathbf{l} \mathbf{m}]$
3	<5	2000
2	$10-20$	2000
1	<75	2000

6 Reiknuð ágjöf og upprennslii í pekktum atburðum

Reiknuð var hæð 2\% upprennslis og ágjöf yfir flóðvarnargarðinn fyrir prjú tímabil, veturinn 2020, desember 2015 og janúar 1990 međ sama hætti og í kaflanum á undan. En líkt og ádur kom fram pá fæddi yfir varnargarðinn í janúar og febrúar 2020 og auk pess flæddi í tvígang desember 2015 og einu sinni í janúar 1990, svo vitað sé. Pað eru ótal fleiri atvik á undanförnum árum en hér verður eingöngu fjallað um pessi prjú tímabil.

6.1 Veturinn 2019-2020

Líkt og sést á Mynd 20 pá náði reiknuð hæð 2% upprennslis yfir +7 m hæð í alls 9 daga yfir veturinn 2019-2020. Pá náði upprennslið tæplega upp í +8 m hæð pann 10. febrúar sem er töluvert yfir hæð flóðvarnargarðsins. Skipta má pessum 9 dögum í 5 tilfelli par sem 2% upprennsli nær yfir hæð flóđvarnargarðsins yfir samfellt tímabil.

2\% upprennsli veturinn 2019-2020

Mynd 20 Hæð 2\% upprennslis upp ströndina við eystri sandfangarann veturinn október 2019 - febrúar 2020. Hæð flóđvarnargarðs merkt međ rauð̌i línu.

Við mat á ágjöf yfir flóðvarnargarðinn á pessu tímabili kemur í ljós að veruleg ágjöf (meira en 5 l/s per m) pá daga sem 2% upprennsli var hærra en flóðvarnargarðurinn. Mest náði ágjöfin í tæpa $20 \mathrm{l} / \mathrm{s} / \mathrm{m}$ pann 10. febrúar sem svarar til atburðar međ um pað bil 5 ára endurkomutíma, sjá Mynd 21.

Ágjöf yfir varnargarð í hæð +7.1m veturinn 2019-2020

Mynd 21 Ágjöf yfir flóð̌varnargarð̃ með hæðina $+7,1 \mathrm{~m}$ á móts við eystri sandfangarann veturinn október 2019 - febrúar 2020

6.2 Desember 2015

Við mat á 2% upprennsli í desember 2015 koma í ljós tvö atvik par sem upprennslið náði upp í +7 m líkt og sjá má á Mynd 22. Dagarnir 29. og 30. des eru taldir sem eitt atvik pví pađ átti sér stað á innan við 24 klukkustundum. Samkvæmt útreikningum náðu öldurnar yfir varnargarðinn 22. og 30. desember 2015 en samkvæmt heimildum heimamanna pá flæddi einnig yfir hann pann 7. desember. Atvikið má sjá á myndinni par sem ferillinn nær rétt upp að hæðinni +7.1 m og bó pað greinist ekki sem 2% upprennslis atburður bá má samt sjá á Mynd 23 að bað hafi bó gefið yfir garðinn pann dag.

2\% upprennsli desember 2015

Mynd 22 Hæð 2\% upprennslis upp ströndina við eystri sandfangarann í desember 2015. Hæð flóðvarnargarðs merkt međ rauđ̛ri línu.

Ágjöf yfir flóđvarnargarðinn í desember 2015 var einnig metin samhliđa 2\% upprennslishæð̂inni. Líkt og sjá má á Mynd 23 pá gaf verulega yfir flóđvörnina (meira en $5 \mathrm{l} / \mathrm{s} / \mathrm{m}$) bá daga sem 2% upprennslishæð nær yfir hæð varnargarðsins. Pá hefur einnig gefið aðeins yfir varnargarðinn pegar 2% upprennslishæð nær yfir $+6,0 \mathrm{~m}$.

Mynd 23 Ágjöf yfir flóð̃varnargarð̀ með hæðina $+7,1 \mathrm{~m}$ á móts við eystri sandfangarann desember 2015.

6.3 Janúar 1990

Við mat á 2% upprennsli öldu fyrir janúar 1990 koma fram tveir atburðir par sem 2% upprennsli nær að eða yfir flóðvarnargarðinn, Mynd 24. Pann 9. janúar nær upprennslið upp í +8 m samkvæmt núverandi aðstæðum, en ströndin var mun framar á peim tíma og pví alls óvíst að pað hafi ollið flóðum upp við byggðina líkt og hefði gerst veturinn 2020 ef sama veđur hefði pá skollið á. Ef aðstæður á beim tíma hefðu verið pær sömu og nú má búast við að pað hafi verið allt að 25 l/s/m ágjöf yfir varnargarðinn pann 9. janúar líkt og sjá má á Mynd 25.

Mynd 24 Hæð 2% upprennslis á móts við eystri sandfangarann í janúar 1990. Hæð flóðvarnargarð̀s merkt međ rauđ̃ri línu.

Mynd 25 Ágjöf yfir flóďvarnargarð̀ með hæð̇ina +7,1 má móts viđ̀ eystri sandfangarann janúar 1990.

6.4 Áhrifapættir í bekktum flóðaatburðum

Eins og komið hefur fram í bessum kafla pá hefur 2% upprennsli náð um eđa yfir +8 m hæð í minnst prem ađskildum atburðum á síðastlið̃um 30 árum. Ekki er vitað til pess hvort fleiri atvik hafa átt sér stað par sem 2% upprennsli hafi náð slikri hæð en margt bendir til pess ađ líklegt er að svo sé. Atburðir af pessu tagi ættu að hafa um 100 ára endurkomutíma en niðurstöður hermda gagnasafnsins sem og athugun pekktra atburða undanfarin 30 ár bendir til pess að endurkomutími pess ađ̛ 2% upprennsli öldu nái í +8 m hæð sé u.b.b. 10 ár.

Ágjöf yfir varnargarða verða vegna samspils ýmissa pátta, svo sem hæð sjávar, ölduhæd, öldustefnu og veðurfari. Vitað er að pað flæð̈ir vart yfir varnargarði við lygnan sjó pó
sjávaryfirborð sé hátt, né flæðir yfir prátt yfir háar öldur pegar sjávarborð liggur lágt. Pví er vert að brjóta flóðaatburði niður í helstu áhrifabættina til að sjá hvaða páttur spilaði mest inn í hverju sinni. Í töflu 9 má sjá ad atburðirnir í janúar 1990 og desember 2015 eru mjög svipaðir, par sem sjávarstaða er svipuð og hæð kenniöldu svipuð, bá er atburðurinn í febrúar 2020 aðeins veigaminni en hinir tveir prátt svipað̃a sjávarstöðu. Vindáhlað̃andi átti engan pátt í sjávarstöðu í neinum af atburðunum, enda engar forsendur fyrir pví.

Tafla 9 Áhrifabættir í pekktum flóðaatburðum, upprennslishæð og ágjöf

Atburður	9. jan 1990	30. Des 2015	10. feb 2020
2\% upprennslishæo [m]	8,1	8,1	7,9
Ágjöf yfir varnargaro [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]	26	26	19,5
Sjávarstaða/stjarnfræðileg [m]	3,6 / 2,5	3,6 / 2,4	3,5 / 2,8
Prýstingsáhlaðandi [m]	0,4	0,6	0,5
Vindáhlaðandi [m]	0	0	0
Ölduáhlaðandi [m]	0,7	0,6	0,2
Kennialda á 7m dýpi [m]	5,6	5,6	3,2
Kennialda við fjöruborð [m]	2,1	2,1	2,0
Vindhraঠi [m/s]	24	23	11
Vindátt	VSV	VSV	NV

7 Æskileg hæð flóðvarnargarðs og sjóvarnar við veg

Hér verður fjallað um æskilega hæð tvenns konar varnarmannvirkja. Annars vegar er pað flóðvarnargarður svipaður peim sem fyrir er í fjörunni. Tilgangur hans er ađ koma í veg fyrir að̃ mikið flæði inn á landið innan við garðinn pannig að tjón hljótist af. Ekki parf að koma í veg fyrir að lítilsháttar flæði yfir garðinn á nokkurra ára fresti enda eru ekki við̉kvæm mannvirki eða starfsemi alveg upp við garðinn. Pá afmarkar garðurinn varnarlínu gagnvart rofi. Rof fjörunnar skal ekki ná inn fyrir garðinn.

Hins vegar verður fjallað um sjóvarnargarð viđ veg sem liggur eftir fjörunni. Í pví tilfelli parf ađ takmarka ágjöf yfir sjóvarnargarðinn pað mikið að umferð stafi ekki hætta af.

7.1 Flóðvarnargarður

Mynd 26 sýnir líkindadreifingu međalágjafar yfir flóð- eđa sjóvarnargarð í Vík. Par kemur fram ađ árleg ágjöf yfir núverandi garð í hæðinni $+7,1 \mathrm{~m} \mathrm{SH} 2020$ er um $10 \mathrm{l} / \mathrm{s} / \mathrm{m}$. Myndin sýnir bæð̃ ferla fyrir núverandi hæð flóđvarnargarðs ásamt hærri görðum, $+7,5,+8,0$ og $+8,5 \mathrm{~m}$. Í kaflanum hér fyrir framan er fjallað um atburði síđastliđins vetrar og taliđ ađ ágjöfin yfir garðinn hafi mest orðið um $20 \mathrm{l} / \mathrm{s} / \mathrm{m}$.

Vík - Endurkomutími Ágjafar yfir varnargarơ

Vik - Endurkomutimi Ágjafar yfir varnargarơ

Mynd 26 Líkindadreifing međalágjafar yfir flóð- eđa sjóvarnargarð í Vik fyrir hæð varnar frá $+7,1 \mathrm{~m}$ til $+8,5 \mathrm{~m}$ SH2020. Neðri myndin sýnir stækkaða mynd af ágjöf fyrir lágan endurkomutíma.

Ekki er einhlítt hvaða kröfur eigi ađ gera fyrir flóđvarnargarð eins og í Vík. Pó að flætt hafi yfir garðinn s.l. vetur sem nemur um $20 \mathrm{l} / \mathrm{s} / \mathrm{m}$ pá hlutust engar verulegar skemmdir af. Hins vegar fylgja slíkum flóðum ópægindi og ekki síst óöryggi.

Hér er lagt til að flóðvarnargarðurinn verði hækkaður pannig að árleg ágjöf verði innan við 5 $1 / \mathrm{s} / \mathrm{m}$. Pað svarar til bess að garðurinn verði hækkaður um sem nemur 0,5 mí +7,6 m hæð SH2O20. Með bessu er ekki verið að koma í veg fyrir ágjöf yfir garð̊inn en að draga verulega úr henni.

7.2 Sjóvarnargarður við veg

Líkt og kemur fram í kafla 5 mælir EurOtop 2018 með pví að mesta ágjöf stakrar öldu sé innan við $2000 \mathrm{l} / \mathrm{m}$ við veg meðfram strönd af öryggisástæðum. Fari ágjöfin yfir pessi mörk geti pað verið hættulegt jafnvel fyrir bíl sem ekið er hægt eftir veginum, bar sem hætta er á að bíllinn fljóti upp. Pví parf endurkomutími slíks atburðar ađ̃ vera nokkuđ hár.

Fyrir nýjan veg sem liggur að og frá göngum í gegnum Reynisfjall eru hér settar pær kröfur til sjóvarnargarős að ágjöf sem nemur $2000 \mathrm{l} / \mathrm{m}$ komi ađ̃ jafnaði ekki tíðar en á um 50 til 100 ára fresti.

Ef að gera ætti ráð fyrir að fólk gæti gengið meðfram vegi byrfti að gera strangari kröfur pví að talið er að ágjöf sem nemur um $600 \mathrm{l} / \mathrm{m}$ geti verið hættuleg fyrir gangandi vegfarendur.

Annar kostur væri að setja upp viđ̃vörunarkerfi og loka vegi pegar hætta er á að ágjöf fari yfir viðmiðunarmörk.

Mynd 27 sýnir líkindadreifingu ágjafar stakrar öldu fyrir hæð sjóvarnar á bilinu $+7,1 \mathrm{~m}$ til $+9,0 \mathrm{~m}$ SH2020. Pá gefur tafla 10 magn ágjafar stakrar öldu fyrir endurkomutíma á bilinu 1 til 1000 ár.

Par kemur fram ađ̛ til ađ við̛miđunarmörk séu uppfyllt međ endurkomutíma um 50 til 100 ár pá purfi hæð sjóvarnar að vera í um +9,0 m SH2O20.

Mynd 27 Líkindadreifing ágjafar stakrar öldu fyrir hæð sjóvarnar á bilinu +7,1 m til +9,0 m SH2020. Ath. lóðrétti kvarð̀inn á myndinni er $\mathrm{m}^{3} / \mathrm{m}$ en umfjöllun um ágjöf í skýrslunni er íl/m.

Tafla 10 Endurkomutími ágjafar stakrar öldu sjóvarnargarða með hæð á bilinu +7,1 m til +9,0 m SH2020.

Endurkomutími	Ágjöf yfir varnarmannvirki/vegstæði í hæð $[\mathbf{l / m}]$				
$[\mathbf{a r}]$	$+\mathbf{7 , 1} \mathbf{m}$	$+\mathbf{7 , 5} \mathbf{~ m}$	$+\mathbf{8 , 0} \mathbf{m}$	$+\mathbf{8 , 5 \mathbf { m }}$	$+\mathbf{9 , 0} \mathbf{m}$
1	17.700	4.200	0	0	0
10	40.400	27.700	13.800	800	0
100	61.200	45.300	30.300	16.400	4.000
1000	87.000	62.000	43.000	28.800	15.600

8 Tilvitnanir

1. Kamphuis (2000). „Introduction to coastal engineering and management: 2nd edition". World Scientific.
2. B. Gouldby, D. Wyncoll, M. Panzeri, M. Franklin, T. Hunt, D. Hames, N. Tozer, P. Hawkes, U. Dornbusch, og T. Pullen (2017). „Multivariate extreme value modelling of sea conditions around the coast of england". Proceedings of the Institution of civil engineers, Maritime engineering, 170 tbl., bls. 3-20
3. Bryndís Tryggvadóttir (2020) Mat á aftaka sjávarflóðum: Innleiðing aðferða sem byggist á samlíkum útgilda. Lokaverkefni í MSc námi viđ Umhverfisverkfræði hjá Háskóla Íslands. Reykjavik.
4. EurOtop, 2018. Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. Van der Meer, J.W., Allsop, N.W.H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Troch, P. and Zanuttigh, B., www.overtopping-manual.com.
5. Fjarhitun, Gylfi İsaksson, 1994. Lágsvæđi - 2. áfangi \{2. hluti\}, Vik í Mýrdal, Landeyðing, skipulagsmat og tillögur um ađ̈gerðir. Fyrir Vita og hafnamálastofnun, Skipulag ríkisins og Viđ̊lagatryggingu Íslands, nóvember 1994.
6. Sigurður Sigurðarson, Pétur Ingi Sveinbjörnsson og Fannar Gíslason (2018) Vik í Mýrdal, sjávarrof og ađ̈gerðir til ad verjast pví. Kötluráð́stefna, 100 ár frá upphafi gossins 12. október 1918.
7. Ólafur Guð̈mundsson og Páll Einarsson, 1991. Úrvinnsla sjávarfallagagn: Sjávarföll og hægfara sjávarborđsbreytingar í Reykjavíkurhöf. Jarð̌vísindastofnun Háskólans
