

Losun svifryks frá gatnakerfinu á höfuðborgarsvæðinu - ferlar og líkan

Particulate Matter Emissions from the Street System in the Capital Region - Processes and Models

Brian C. Barr, MS Earth Sciences Candidate, Háskóli Íslands

Hrund Ólöf Andradóttir, Professor in Environmental Engineering, Háskóli Íslands

Pröstur Porsteinsson, Professor, Environment and Natural Resources & Institute of Earth Sciences, Háskóli Íslands

Sigurður Erlingsson, Professor, Háskóli Íslands

Happy Studded Tire Day, Iceland!

1st of November

-It is now legal to drive with studded tires on your vehicle.

Image source: https://ak0.picdn.net/shutterstock/videos/20825950/thumb/1.jpg

for now

Particulate Matter (PM; í. Svifryk)

- ♦ Particulate Matter, or PM, refers to microscopic airborne solid or liquid particles.
- ♦ Subdivided by size
 - \Rightarrow PM₁₀ = Particles < 10 μ m in diameter
 - \Leftrightarrow PM_{2.5} = Particles \leq 2.5 μ m
- ♦ No type of environmental pollution poses a greater threat to human health (WHO)

How small is PM?

Image source: https://www.downwindersatrisk.org/2017/07/newharvard-study-there-is-no-safe-level-of-exposure-to-smogor-particulate-matter/

Health Effects of Particulate Matter

- ♦ Premature mortality and morbidity, mainly related to respiratory and cardiovascular diseases (WHO, 2013).
- ♦ Estimated that 80 premature deaths occur in Iceland due to PM pollution
 [+ <5 due to NO_x & O₃] (Hreint loft til framtíðar 2017)
- ♦ Children are especially at risk (WHO, 2013).
 - ♦ Pollution reduces lung development, health problems, poorer academic performance, ...
- ♦ Morbidity relates to the occurrence of illness and years lived with a disease or disability (EEA, 2019), leading to decreased living quality and increased time away from work → social monetary loss

Non-exhaust traffic emissions comprise of 50% of Particulate Matter

(Höskuldsson, 2013; Höskuldsson & Thorlacius, 2017; Skúladóttir et al., 2003).

NORTRIP

<u>NO</u>n-exhaust <u>R</u>oad <u>T</u>raffic <u>Induced Particle emission modelling</u>

Process Based Emissions Model

Road Dust

- **⋄** Sources
 - ♦ Wear (road, brakes, tires)
 - ♦ Abrasion/crushing
- **♦ Sinks**
 - Drainage, spray, ploughing, cleaning

Road Moisture

- **⋄** Energy Balance
 - ♦ Evaporation/condensation
 - ♦ Sources and sinks

NORTRIP in Stockholm

- Model run with observed road moisture data
- ♦ Satisfactory representation of PM concentrations at two sites, although one of them displayed large wintertime discrepancies.

Model captured well annual reduction in PM associated with speed limit reductions

NORTRIP at Grensás 2012 & 2016

- ♦ Martina Stefani, a former HÍ student and current specialist at Umhverfisstofnun.
- ♦ Site: Intersection of Grensásvegur and Miklabraut.
- **♦** Conclusions:
 - \diamond Model captures the order of magnitude of the mean PM_{10}
 - ♦ More research needed to understand processes and peaks

Dec. (FHG)

2016 - all year

(FHG)

2016 - all year

(KOP*)

12.0

14.0

0.06

0.00

5.1

6.7

^{*} background stations: FHG - Fjölskyldu-og Húsdúragarðurinn / KOP - Kópavogur Dálsmari

Alarming Traffic and PM₁₀ Trends 2014-2018

- ♦ Traffic increased 46 % 2014 to 2018
- ♦ More traffic, more PM₁₀

11

Annual Traffic at Kauptún

20
19
18
17
16
15
11
13
12

2013

2014

2015

2016

- ♦ 32% of the vehicle fleet used studded tyres 2017; up from 24%
- ♦ More PM exceedances occurred during higher use of studded tires

- ♦ Improve our understanding of the complex processes that cause PM exceedances
 - ♦ Focus: road wetness and studded tires
- ♦ Find the best abatement strategies for road dust.

Image source: Vilhelm Gunnarsson, Iceland Magazine

Less this!

Image source: Iceland Monitor, https://icelandmonitor.mbl.is/news/news/2015/06/02/pm10 pollution high today/

Site: Kauptún, Garðabær

♦ Traffic Counts

- ♦ 18,9 million vehicles in 2018
- ♦ Average of approx. 52.000 vehicles per day
- ♦ 7.9% considered heavy-duty

♦ Continuous data for 2017-present

- **♦** Meteorology
- ♦ Road surface conductivity
- ♦ Road surface temperature

Data Source: Vegagerðin and Veðurstofan

Modelled Emissions with & without Studded Tires

Image source: Pjetur, Iceland Magazine

- ♦ Lowers resuspension
- ♦ But, increases wear rate

Affects modeled processes:

- **⋄** Surface retention
- ♦ Surface dust mass sinks from drainage and spray
- ♦ Salt dilution
- ♦ Reduction of road and tyre wear due to ice

Image source: Image source: Johanna, Camping Iceland Blog, http://www.campingiceland.com/icelandrivingsafety-tips-road-trip

Rolling 6-hour Average of PM₁₀ at Grensás vs. Modelled Road Wetness

January – March 2018

Very dry conditions coupled with fireworks on New Year's day 2018 caused dust levels to skyrocket.

Low PM₁₀ is recorded during prolonged period of wet roads for most of January and February.

During a two-week period of unseasonal dryness, PM₁₀ and PM_{2.5} levels rose sharply, causing multiple exceedances of US and EU air quality standards.

Measured vs. Modelled Daily PM₁₀

1. December 2017 - 31. May 2018

A model run for the Kauptún site for the period from 1. June 2017 to 31. May 2018 shows some correlations ($R^2 = 0.37$) with measured data at Grensás station, but these sites are considerably different, and these results are strictly preliminary.

- ♦ Reykjavík is undergoing an alarming change in traffic that contributes to increased exceedances of particulate matter health safety limits.
- ♦ NORTRIP model quantifies studded tires as a significant dust generation mechanism.
- Dust accumulated on the ground is emitted when the road dries up.
- ♦ Next steps:
 - ♦ Expand and improve model inputs
 - Must account for salting, background and observed air quality data
 - Analyze observed data at Kauptún and Strandaheiði
 - ♦ Run scenarios with different vehicle speeds, road surfaces, fraction of studded tyres
 - ♦ Use of denser asphalts

Takk fyrir!

Acknowledgements

- ♦ Martina Stefani, Umhverfisstofnun
- ♦ Bjarni Már Gauksson, Vegagerðin
- Nicolai Jónasson, Vegagerðin
- Björn Jónsson, Vegagerðin
- Ragnhildur G. Finnbjörnsdóttir, Umhverfisstofnun
- Anna Rut Arnardóttir, Háskóli Íslands
- ◆ EFLA
- Vegagerðin
- Reykjavíkurborg
- ♦ Umhverfisstofnun
- ♦ Veðurstofa

- Jóhannesson, Á., & Arason, A. Ó. (2014). Greining á endingargóðu malbiki. Greining á endingargóðu malbiki. Nýsköpunarmiðstöð Íslands. Retrieved from http://www.vegagerdin.is/vefur2.nsf/Files/Greining_a_endingargodu_malbiki/\$file/Greining_a_endingargodu_malbiki.
- Denby, B. R., & Sundvor, I. (2012). NORTRIP model development and documentation emission modelling. Kjeller.
- Denby, B. R., & Sundvor, I. (2013). Modelling non-exhaust emissions of PM 10 in Oslo. Oslo.
- Denby, B. R., Sundvor, I., Johansson, C., Pirjola, L., Ketzel, M., Norman, M., ... Omstedt, G. (2013). A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling. Atmospheric Environment, 77, 283–300. http://doi.org/10.1016/j.atmosenv.2013.04.069
- Denby, B. R., Sundvor, I., Johansson, C., Pirjola, L., Ketzel, M., Norman, M., ... Omstedt, G. (2013). A coupled road dust and surface moisture model to predict non-exhaust road traf fi c induced particle emissions (NORTRIP). Part 2: Surface moisture and salt impact modelling. Atmospheric Environment, 81, 485–503. http://doi.org/10.1016/j.atmosenv.2013.09.003
- Höskuldsson, P., & Thorlacius, A. (2017). Uppruni svifryks í Reykjavík.
- Umhverfisstofnun. Ársskýrsla 2006, Ársskýrsla 2006 19–19 (2006). Reykjavík, Iceland. Retrieved from https://www.ust.is/library/Skrar/utgefid-efni/arsskyrslur/Umhverfisstofnun Arsskyrsla 2006.pdf
- Vegagerðin. (2008). Klukkustundarumferð 2008. Klukkustundarumferð 2008. Retrieved from http://www.vegagerdin.is/vefur2.nsf/Files/Klukkustundarumferd 2008/\$file/Klukkustundarumferð 2008.pdf
- Vegagerðin. Sólarhringsumferð á föstum talningarstöðum, Sólarhringsumferð á föstum talningarstöðum (2018). Retrieved from http://www.vegagerdin.is/vefur2.nsf/Files/Fastir teljarar 2017/\$file/r cross umferd fastir teljarar 2017.pdf

Location 2: Strandaheiði, Reykjanesbraut

- **♦** Traffic Counts
 - ♦ 5,75 million vehicles from June 2017 to May 2018
 - ♦ Average of approx. 15.700 vehicles per day
 - ♦ 6.2% considered heavy-duty
- Similar data availability as Kauptún

Non-exhaust traffic emissions generation

Direct Mass Loading

- ♦ Road wear
 - ♦ Bitumen and aggregates types
 - ♦ Influenced by road wetness, surface temperature, asphalt composition, vehicle speed, meteorology
- ♦ Tire wear
 - ♦ Frictional energy between the rubber and road
 - ♦ Type of rubber, vehicle weight, asphalt characteristics, vehicle speed, studded tires
- Brakes wear
 - Higher generation at areas of frequent braking; traffic lights, junctions, corners, etc

Indirect Mass Loading

- ♦ Resuspension of road dust
 - ♦ Influenced by wind, vehicles, and road wetness
- Emissions from vegetation, industry, and salting

