Reykjavikurborg

Ágjöf yfir sjóvarnir viđ Sæbraut og tillaga ad úrbótum

Bryndís Tryggvadóttir
Sigurður Sigurðarson
Pétur Ingi Sveinbjörnsson
September 2021

Helstu niðurstöður

İ skýrslu pessari er fjallað um ágjöf yfir sjóvarnir á landsvæði Reykjavíkurborgar við Sæbraut. Tilgangurinn er að meta nauđsynlega hækkun sjóvarna eđa bykkingu grjótkápu með bermu pannig ađ kröfur um ágjöf yfir pær séu uppfylltar.

Ágjöf sjávar á land, annað hvort yfir manngerðar sjóvarnir eða náttúrulega sjávarkamba, er nokkuð flókið ferli par sem ýmsir veđurfarslegir pættir og sjávarföll ráða ferðinni. Sjávarhæð á hverjum tíma ræðst af sjávarföllum og áhlaðanda vegna lágs loftprýstings, vegna vinds sem blæs að landi og vegna öldu sem brotnar úti fyrir ströndinni ef pannig hagar til. pó að veðurfarspættirnir séu innbyrðis hádir pá eru sjávarföllin og veđurfarspættirnir óháðir atburðir. pað er síđan aldan sem kemur upp ađ ströndinni sem skapar ágjöfina. Oft hagar pannig til ađ á hærri sjávarstöðu kemst hærri alda upp að ströndinni. Pað getur bæði verið vegna bess að aldan viđ rót sjóvarnarmannvirkis eđa sjávarkambs er dýpishád eđa pá að öldusveigjuáhrifa gætir minna á hærri sjávarstöðu. Við aðstæður líkt og finnast í Rauðarárvík við Sæbraut er pað ekki orkumikil úthafsalda sem veldur mestum usla. Heldur er bað samspil af sterkum vind, vindöldu og hárri sjávarstöðu par sem vindurinn knýr krappar stuttar öldur að sjóvörnum og feykir peim svo langar vegalengdir yfir landsvæðið handan sjóvarnarinnar.

Pað eru sem sagt samlíkur sjávarhæðar og ölduhæðar upp við ströndina sem ráða líkum á ágjöf yfir sjóvarnir og náttúrulega sjávarkamba. Aðfferðin sem Vegagerðin notar í bessum tilgangi byggir á ađ̛ nota 40 ára langar tímarað̃ir fyrir öldu og vind á hafi og stjarnfræðileg sjávarföll. Úr pessum tímaröðum eru einangraðir um 2000 óháđir aftaka atburðir sem síđan eru notaðir til að herma 350.000 aftaka atburði á hafi. Aðferðin varðveitir bá fylgni sem er milli breytanna í útgildum. Aftaka atburðirnir eru síđ̛an færðir inn á Faxaflóa og upp á ströndinni með öldulíkani og hermilíkani. Pá er komiđ gagnasafn 350.000 aftaka atburða upp viđ̌ ströndina.

Fyrir hvern aftaka atburð í stóra gagnasafninu upp við ströndina er ágjöf yfir sjóvarnir reiknư fyrir pá stađ̃i sem eru til skoðunar. Við ágjafarreikninga eru notaðar reynslulikingar sem byggja á stóru safni líkantilrauna víđ́s vegar ađ úr heiminum. Notast er við svokallaða hönnunarlíkingu par sem meðaltal líkantilrauna fyrir sambærilegt mannvirki er notast við í ágjafareikningum auk öryggisstuð̃la. Pá er líkindafræðilegri úrvinnslu beitt á niðurstöðurnar til að finna endurkomutíma ágjafar á hverjum stað og jafnframt hve mikið purfi að hækka eða breyta sjóvörnum til að uppfylla fyrirfram settar kröfur um ágjöf.

Sem möguleg hækkun og breyting á sjóvörnum á svæði Reykjavíkurborgar við Sæbraut eru bæði skoðaðir hefððbundinn tveggja grjótlaga sjóvarnargarður og garður með pykkari grjótvörn, par sem grjótbermu hefur verið bætt framan á sjóvörnina. Hefðbundinn sjóvarnargarður er byggður úr tveimur lögum af brimvarnargrjóti auk síulaga par undir.

Ofangreindir ágjafarreikningar hafa verið gerðir fyrir 7 reiknipunkta fyrir öldu sem liggja á grunnslóð međfram peim hluta Sæbrautar sem liggur milli Hörpu og Kirkjusands. Sjóvörninni er síðan skipt niður í stöðvar með 100 m millibili par sem stöð 100 er næst Hörpu og stöð 1900 við Kirkjusand. Ágjafareikningarnir fyrir reiknipunktana eru síđan túlkaðir fyrir hverja stöð.

Niðurstöður ágjafareikninga pessa verkefnis eru bær ađ̃ ráðast purfi í betrumbætur á sjóvörninni aðallega á tveim köflum, b.e. peim hluta sem liggur gengt gatnamótum Sæbrautar og Snorrabrautar, stöðvar 700 til 900, og kafla sem liggur gengt gatnamótum Sæbrautar og Kringlumýrabrautar, stöð̌var 1800 til 1900, auk kafla næst Hörpu, stöð 100.

Við ađ̃stæður líkt og finnast við Sæbraut verður ágjöf helst í hvassviđri pegar norðanátt feykir stuttum kröppum öldum sem ná yfir sjóvörnina langar vegalengdir. Pessi hluti ágjafar er ekki inni í hefdbundnum ágjafarreikningum en getur verið afgerandi páttur í hvassviðri pegar reiknuđ ágjöf er lág. Pessi ágjöf er ekki líkleg til ađ valda skemmdum á mannvirkjum
en getur við pær aðstæður sem eru við Sæbraut haft áhrif á öryggi og flæði umferðar. Petta kemur vel fram á myndböndum af flóðaatburðum viđ Sæbraut. İ ljósi pess voru í loka fasa pessa verkefnis reiknislegar niðurstöður sem miðuðust við fyrirfram gefin viðmiðunarmörk fyrir ágjöf endurskoðaðar.

Lagt er til ađ í stöðvum 700 til 900 verði sjóvörnin annað hvort hækkuđ i $+5,4 \mathrm{~m}$ med hefð́bundnu sniði án bermu eđa í $+5,0 \mathrm{~m}$ með 3 til 4 m breiðri bermu. Að í stöðvum 1800 til 1900 verð̃i sjóvörnin annað̃ hvort hækkuđ̃ i $+5,6 \mathrm{~m}$ án bermu eđa $+5,4 \mathrm{~m}$ med 2 til 3 m breiðri bermu. İ stöð 100 nægði að hækka sjóvörnina i $+5,0 \mathrm{~m}$ án bermu eđ̆a i $+4,7 \mathrm{~m}$ med 2 til 3 m breidri bermu.

Við skoðun á framkvæmdakostnað̃i er rétt að̃ benda á að̃ hér eru niðurstöður túlkað̃ar miđ̃að viđ 100 m milli sniða. Pví parf ad bæta við um 50 m til sitt hvorrar handar til ađ fá lengd við̃gerðar, pó hád aðstæðum. Pannig er líklegt að lengd viðgerðar við stöðvar 700 til 900 verði um 300 m löng.

Niđ̌urstöður ágjafarreikninga á hærri sjávarstöđu, par sem stuđst er við spár um hækkun sjávarstöðu vegna hnattrænnar hlýnunar annars vegar eftir 30 ár og viđ lok aldarinnar hins vegar, sýna ađ töluverðar líkur séu á ađ hönnunarkröfur sjóvarnarinnar eftir ofangreindar breytingar verði enn uppfylltar eftir 30 ár og mögulega lengur. Par sem eðlilegur líftími sjóvarnarmannvirkja er um 30 til 40 ár pá gefst færi á ad endurskoða forsendur og hönnun ad peim tíma liðnum.

Efnisyfirlit

Helstu niðurstöður i
Efnisyfirlit iii
1 Inngangur 1
2 Hæðarkerfi og sjávarföll 2
3 Sjávarhæð 3
3.1 Loftprýstingsáhlað̃adi 3
3.2 Vindáhlaðandi 4
3.3 Ölduáhlaðandi 5
3.4 Hækkun sjávarborðs vegna hnattrænnar hlýnunar 5
4 Hermun aftaka atburða7
4.1 Afmörkun óháðra aftaka atburða. 8
4.2 Hermun byggt á samlíkum 8
4.3 Safn aftaka atburða flutt upp að ströndinni 10
4.3.1 Aftaka flóðaatburðir við Sæbraut 12
4.4 Vind- og ölduáhlaðandi á grunnslóð 13
5 Mat á ágjöf yfir flóðvarnargarð. 15
5.1 Viðmiðunarkröfur fyrir ágjöf samkvæmt EurOtop 2018 15
5.2 Ágjöf yfir flóðvarnargarð 15
6 Sjóvarnir við Sæbraut 17
6.1 Ágjöf hjá reiknipunkti S1 19
6.2 Ágjöf hjá reiknipunkti S2 21
6.3 Ágjöf hjá reiknipunkti S3 23
6.4 Ágjöf hjá reiknipunkti S4 25
6.5 Ágjöf hjá reiknipunkti S5 27
6.6 Ágjöf hjá reiknipunkti S6 29
6.7 Ágjöf hjá reiknipunkti S7 31
6.8 Niðurstöður ágjafarreikninga við Sæbraut 33
7 Pekkt aftakaveður 35
7.1.1 Aftakaveður 2. nóvember 2012 35
7.1.2 Aftakaveður 10.-11. desember 2019. 36
8 Samantekt 37
9 Heimildir 38

1 Inngangur

Reykjavíkurborg hefur fengið Vegagerðina til að greina og skoða ágjöf yfir sjóvarnir við Sæbraut. Par hefur komið fyrir á undanförnum árum að sjór hefur gengið yfir varnir og valdið óbægindum fyrir umferð sem og vegfarendur hjóla- og göngustíga á svæðinu. Ágjöf yfir sjóvarnir við Sæbraut hafa lengi verið til ama og hefur Reykjavíkurborg purft að hreinsa grjót, bang og para af göngustígum við sjóvörnina á minnst tveggja ára fresti að međaltali yfir síđastliđna áratugi. İ pví sambandi má nefna myndbönd af ágjöfinni, m.a. myndbönd frá 2 . nóvember 2012 sem tekin voru af Kristni Jóni Eysteinssyni og Erni Marinó Arnarsyni sem bæðu er á facebook síðu Kristins og á YouTube. Pessi myndbönd hafa fengið töluverða athygli, sjá:
https: / /www.facebook.com/kristinnj75/videos/4829940994980
https:/ / www.youtube.com/watch?v=aG3J6PH5S2s\&t=9s
Í verkefninu verður notast við aðferðarfræði sem var próuð í Bretlandi í peim tilgangi að geta lagt betur mat á hættu á sjávarflóðum og endurkomutíma flóðaatburða. Aðferðarfræðin var tekin upp í meistaraverkefni í HÍ par sem hún var innleidd og aðlöguð að íslenskum aðstæðum veturinn 2020. Síđan pá hefur pessi aðferðarfræði verið notuð hjá Hafnadeild Vegagerðarinnar við mat á flóðahættu víđsvegar um land, par á meðal Sauđárkróki, Vík í Mýrdal og nú síđast fyrir Faxaflóahafnir á Granda.

2 Hæðarkerfi og sjávarföll

Í Reykjavík eru aðallega notuð tvö hæðarkerfi. Annars vegar hæðarkerfi Faxaflóahafna, sjókerfi með „núll" lítið eitt neðan við meðalstórstraumsfjöru. Hitt kerfið er hæðarkerfi Reykjavíkur, gamalt hæðarkerfi međ „núll" nálægt međalsjávarhæð. Pá hafa Landmælingar Íslands ákvarðað eitt samhæft hæðarkerfi fyrir Ísland, ISH2004, sem á að miðast viđ meðalsjávarhæð við landið allt. Tafla 1 sýnir hæð stórstraumsflóðs og fjöru, meðalsjávarhæð og sjókortanúll í pessum premur hæðarkerfum.

Tafla 1 Sjávarföll og samanburður á hæðarkerfum í Reykjavik

		Hæðakerfi Faxaflóahafna $[\mathrm{m}]$	Hæðarkerfi Reykjavíkur $[\mathrm{m}]$	Landshæðakerfi ISH2OO4 $[\mathrm{m}]$
Meðalstórstraumsflód	MStFl	$+4,0$	$+2,18$	$+1,73$
Međalsjávarhæð	MSH	$+2,1$	$+0,28$	$-0,17$
Meðalstórstraumsfjara	MStFj	$+0,2$	$-1,62$	$-2,07$
Sjókortanúll		$+0,0$	$-1,82$	$-2,273$

Í pessari skýrslu verða allar hæðir gefnar í hæðarkerfi Reykjavíkur sem er með „núl" $1,82 \mathrm{~m}$ ofar en „núll" í hæðarkerfi Faxaflóahafna. Pannig er tölugildi á hæðum sjóvarna 1,8 m lægri í hæð̃arkerfi Reykjavíkur en í hæðarkerfi Faxaflóahafna.

3 Sjávarhæð

Sjávarhæð á hverjum tíma er samspil ýmissa bátta. Stærst vega stjarnfræðileg sjávarföll sem stafa af aðdráttarafli tungls, sólar og reikistjarna. Sjávarföllin ráðast af gangi himintunglanna og eru pví fyrirfram pekkt og gefin út í sjávarfallatöflum. Á degi hverjum fara tvær sjávarfallabylgjur umhverfis landið og pegar aðdráttarafl tungls og sólar leggjast saman er stórstreymt en smástreymt pegar tungl og sól toga pvert á hvort annað.

Auk stjarnfræðilegra sjávarfalla hafa ýmsir veðurfarslegir pættir áhrif sem leggjast ofan á sjávarföllin, svokallaður áhlaðandi. Greint er á milli áhlaðanda af prennskonar uppruna. Fyrst ber að nefna áhlaðanda vegna loftprýstings, í lágum loftprýstingi hækkar yfirborð sjávar en lækkar á móti pegar loftprýstingur er hærri. Vindáhlaðandi myndast pegar vindur blæs yfir haffletinum. Vindáhlaðandi er lágur par sem er aðdjúpt en hærri par sem grynningar ná langt út. Vindhraði og lengd aðdrags hafa áhrif á stærð hans, en bó er dýpi stærsti áhrifapátturinn par sem vindáhlaðandi verður yfirleitt ekki mikill nema að pað sé aðgrunnt og grynningar nái langt út. Að síđustu ber ađ nefna ölduáhlaðanda. Hann myndast upp við land par sem öldur brotna á grynningum utan strandar og ađstæður haga pví pannig til að sjór á ekki greiða leið út til hliðar við grunnbrotin.

3.1 Loftprýstingsáhlað̃andi

Mat á loftprýstingsáhlaðanda byggist á líkingu á hækkun sjávarborðs vegna breytinga á loftprýstingi, loftprýstingsáhlaðandi má áætla með margföldun ákveðins stuðuls með breytingu loftprýstings frá međalloftprýstingi. Pegar loftprýstingur er lágur hækkar sjávarborð en lækkar pegar loftprýstingur er hár. Eðlisfræðin segir að í stöðugu ástandi hækki sjávarborð um 1 cm við fall á loftprýstingi um 1 hPa , sem svarar til að stuðullinn sé 1,0.

Loftprýstingsáhlaðandi er hins vegar sjaldnast stöðugt ástand. Lægðir hreyfast yfir hafflötinn og međ peim einskonar „bóla" á haffletinum undir miðju lægðarinnar. Takmörk eru á pví hve hratt „bólan" getur myndast og hvað gerist pegar lægðin gengur á land eđa fer af landi út á sjó. Pví er fyrrnefndur stuđull yfirleitt lægri en 1,0.

Dreifirit loftprýstings og áhlað́anda 2012-2020

Mynd 1 Dreifirit loftprýstings ECMWF gagna og reiknað́s áhlað̃anda úr sjávarfallalíkani Vegagerðarinnar í punktinum 64N 24V fyrir árin 2012-2020.

Mynd 1 sýnir dreifirit loftprýstings úr gögnum evrópsku veđurstofunnar, ECMWF, og reiknaðs
loftprýstingsáhlaðanda úr sjávarfallalíkani Vegagerðarinnar. Samkvæmt peirri athugun er stuðullinn 0,92.

Ólafur og Páll (1991) unnu úr sjávarfallamælingum í Reykjavík fyrir árin 1956 til 1989, báru saman við stjarnfræðileg sjávarföll og ákvörðuðu stuðulinn par 0,84.Í pessu verkefni er notast við stuðulinn 0,92.

3.2 Vindáhlaðandi

Vindáhlaðandi sjávar var áætlaður út frá jöfnu Bretschneider sem er hér fyrir neðan, par sem U er vindhrađi, h er dýpi sjávar og L er lengd ađdrags par sem dýpisbreyting frá h_{1} til h_{2} á sér stað.

$$
S_{w}=3 \cdot 10^{-6} \cdot U^{2} \cdot L \cdot \frac{\ln \left(\frac{h_{1}}{h_{2}}\right)}{g\left(h_{1}-h_{2}\right)}
$$

Mynd 2 Dýptarkort af hafsvæðinu sem notað var til að meta vindáhlaðanda við Sæbraut. Af kortavef íslenskra sjókorta Landhelgisgæslunnar og Landmælinga Íslands

Dýpi sjávar og lengd aðdrags byggist á dýptarmælingum Landhelgisgæslunnar. Fyrir hvern stað par sem vindáhlaðandi er ákvarðaður er hafsvæðinu skipt upp í 45° geira og lengd aðdrags í miðju geirans gildir fyrir vind sem kemur úr peim geira. Sem dæmi má sjá hafsvæðið við Sæbrautina og hvernig pví er skipt upp í geira á mynd 2 . Algengur vindáhlaðandi er á bilinu 0 til 20 cm , bó getur pað gerst á svæðum par sem er aðgrunnt og hvasst að vindáhlaðandi nái hátt í 30 cm . Fjallað verður nánar um stærðargráðu vindáhlaðanda á hverju svæði í undirköflum um viðeigandi staðsetningar.

3.3 Ölduáhlað̃andi

Ölduáhlaðandi er sá hluti sjávarhæðar sem verður til vegna mikils öldugangs, áhlað̃andinn er staðbundinn og getur breyst mikið á milli nærliggjandi svæða. Hæð pessa áhlaðanda byggist helst á lengd öldu, ölduhæð og halla strandar. Ölduáhlað̃andi eykst með auknum halla strandar, lengri öldu og hærri. Mat á ölduáhlaðanda er vandmeðffarið. Hér er notast við að̛ferð sem Yoshimi Goda setti fram í briðju útgáfu af Random seas and design of matitime structures sem gefin var út 2010 og er 33. bindi í Advanced Series on Ocean Engineering seríunni. Aðferðin byggist á niðurstöðum úr PEGBIS líkaninu sem hermir eftir handahófskenndum öldum úr mismunandi áttum. Pannig má meta ölduáhlaðanda með eftirfarandi jöfnu:

$$
\frac{\zeta_{\theta_{0}=0}}{H_{0}}=0,0063+0,768 s-(0,0083+0,011 s) \cdot \ln \left(\frac{H_{0}}{L_{0}}\right)+(0,00372+0,0184 s) \cdot\left(\ln \left(\frac{H_{0}}{L_{0}}\right)\right)^{2}
$$

par sem $\zeta_{\theta_{0}=0}$ er ölduáhlaðandi óháður stefnu, H_{0} er hæð kenniöldu við 10 m dýpi, L_{0} er lengd öldu og s er halli strandar.

Ölduáhlaðandi er einnig háður stefnu öldunnar miđað viđ ströndina sem hún kemur upp ađ, aðffallshorn öldu viđ ströndina. Áhrif öldustefnu á áhlaðandann má meta međ eftirfarandi jöfnu:

$$
\zeta=\zeta_{\theta_{0}=0}\left(\cos \theta_{0}\right)^{0,545+0,038 \ln \left(\frac{H_{0}}{L_{0}}\right)}
$$

par sem θ_{0} er aðffallshorn kenniöldu á 10 m dýpi.

3.4 Hækkun sjávarborð̌s vegna hnattrænnar hlýnunar

Milliríkjanefnd Sameinuđu pjóðanna um loftlagsbreytingar (IPCC) hefur skoðað gögn og sett fram spár um hækkun sjávarborðs vegna hnattrænnar hlýnunar. Meðalhækkun sjávar á heimsvísu á tímabilinu 1901 - 2010 er metin 0,19 m af IPCC par sem meðalhækkun frá 1993 til 2010 hafi verið svo mikiđ sem $3,2 \mathrm{~mm}$ /ári. Með pessu áframhaldi er líklegt að fyrir árið 2100 verði međalhækkun sjávar á heimsvísu orðin um $26-82 \mathrm{~cm}$. Útpensla vegna hlýnun sjávar stữlar að hækkun yfirborði sjávar en aukið vökvamagn vegna bráð̃nun jökla er helsti orsakavaldur hærra sjávaryfirborđs. Bráðnun jökla hefur einnig í för með sér breytingar á byngdarsviđi næst jöklunum sem dregur úr hækkun sjávar á nærliggjandi svæði. Pví má búast viđ bví að hækkun sjávar við Íslandsstrendur stafi helst af bráðnun Suðurskautslandsins á meðan bráðnun Grænlandsjökuls mun hafa minni áhrif. Samkvæmt skýrslu vísindanefndar, 2018, um loftlagsbreytingar og áhrif beirra á Íslandi má búast viđ bví að hækkun sjávarstöðu viđ Î́slandsstrendur verði um 30-40\% af hækkun meðalsjávarstöðu á heimsvísu. Óvissumörkin eru pó rífleg pví bráðnun íss á Grænlandi og Suðurskautslandi hefur ráðandi áhrif á hækkun sjávar við İsland, aukið massatap á Suđurskautslandinu gæti bætt tugum sentimetra við hækkun hér viơ land.

Landhæðabreytingar vegna jarðskorpuhreyfina hafa einnig áhrif á stöðu sjávar og má pví nefna að samkvæmt skýrslu Veðurstofunnar má búast við 10 til 20 cm sigi á svæðinu frá Suðvesturlandi til Norðvesturlands. Jafnframt kemur fram í skýrslunni að á Suð̃vesturlandi til Norðvesturlands er hlutfallsleg hækkun sjávarstöðu vegna loftlagsbreytinga 30 - 34\% af hnattrænni hækkun. Í heild má búast við hækkun á sjávarstöðu fyrir árið 2100 hjá Suðvesturlandi til Norðvesturlands verði á bilinu $25-54 \mathrm{~cm}$ fyrir $50-100 \mathrm{~cm}$ hnattræna hækkun. Gera má rád fyrir að hækkun sjávarstöðu fylgi hámarksgildi á pessu bili fyrir sunnanverðan Faxaflóa. (Halldór Björnsson og fl., 2018).

Fyrir flóðvarnargarð sem byggður er til nokkurra áratuga skal skoða pær sviðsmyndir sem gætu átt sér stað̃ í seinni hluta líftíma flóðvarnargarðsins. Gera parf grein fyrir pví hvernig aðstæður gætu verið eftir 30 til 50 ár og taka tillit til mögulegrar aukningar í ágjöf vegna hækkunar á sjávarstöðu. Gefið að líftími slíks mannvirkis sé 30 til 50 ár pá pykir eðlileg að staða mannvirkisins sé skoðuð eftir 30 ár og metið hvort endurbóta sé pörf á allra næstu árum eða hvort pað megi bíða í 10 til 20 ár. Miðað við 54 cm hækkun á sjávarstöðu fyrir árið 2100 á höfuð̃borgarsvæðinu má ætla að hækkun sjávarstöðu eftir 30 ár verði orðin 24 cm og er miđað við pá hækkun sjávarstöðu í tillögum að hækkun sjóvarna síđar í skýrslunni.

4 Hermun aftaka atburða

Sem mat á virkni núverandi sjóvarnar og innlegg í hönnun sjóvarna á svæðinu var myndað stórt gagnasafn af aftakaatburðum sem byggist á 40 ára sögulegri tímaröð öldu- og veðurspágagna af Faxaflóa og hafsvæðinu utan hans. Notast var við spágögn með einnar klukkustundar tímaskrefi frá evrópsku veðurstofunni, ECMWF, frá árunum 1979 til 2020 í hnitum utan við Faxaflóa, $64^{\circ} \mathrm{N} 23,5^{\circ} \mathrm{V}, 64^{\circ} \mathrm{N} 24^{\circ} \mathrm{V}$ og $64,5^{\circ} \mathrm{N} 24^{\circ} \mathrm{V}$. Spágögnin innihalda vindhraða, vindstefnu, hæð kenniöldu, sveiflutíma og stefnu kenniöldu auk loftprýstings viđ yfirborð sjávar, en hann var notaður til að meta áhlaðanda vegna loftprýstings. Að auki var notast við tímaröð fyrir stjarnfræðileg sjávarföll í Faxaflóa sem reiknuð er út frá stjarnfræðilegum stuðlum í reiknilíkaninu MIKE frá DHI og endurreiknað̃a tímaröð vindgagna í mynni Faxaflóa frá Veđurstofu Íslands.

Tímaröð spágagna úr ofangreindum hnitum var keyrð í sjávarfallalíkaninu MIKE 21 SW og færð inn að mynni Faxaflóa í punkt norðan við Garðsskaga, sjá mynd 3. Petta var gert pví að aftakaatburðir utan Faxaflóa með suðaustan vind- og öldustefnum skila sér ekki að fullu inn á innri hluta Faxaflóa og bví væri hætta á að slík suđaustan veður skekktu myndina við höfuðbborgarsvæðið ef pau væru tekin með. Hins vegar er mun líklegra að aftakaatburður norðan við Garðskaga skili sér inn að höfuðborgarsvæð̇inu og verður pví í framhaldinu unnið með tímaröðina í peim punkti. Pá voru fengin spágögn um vindhrað̃ og stefnu norðan við Höfuð̆borgarsvæðið í hniti $64,2^{\circ} \mathrm{N} 22,1^{\circ} \mathrm{V}$ frá Veđurstofu Íslands svo notast yrði við stað̆bundin vindgögn í úrvinnslunni.

Mynd 3 Yfirlitsmynd yfir hafsvæðinu utan Faxaflóa sem sýnir stað̃setningu spápunkta. Spágögn fyrir árin 1979-2020 frá ECMF eru fengin úr prem hnitum (gulir tíglar) og flutt með MIKE21 SW í punkt norðan við Garðskaga (Grænn tígull).

Úr tímaröðinni norðan við Garðsskaga voru einangraðir um 2000 óháðir aftaka atburðir og peir notaðir til að útbúa gagnasafn með 350.000 óháđum atburðum par sem í pað minnsta ein af ofangreindum breytum er í hærra lagi. Gagnasafnið var útbúið með pví að nota aðferðina „Multivariate extreme value modelling" (B. Gouldby, 2014). Par er notast við óháða atburði til að herma pær breytur sem stuðla að aftaka atburðum. Aðferðin varðveitir pá fylgni sem er milli breytanna í útgildum. Atburðirnir eru síđan færðir upp ađ ströndinni međ öldulikani MIKE 21 SW og með svokölluð̌u Meta Model hermilíkani, sem er ekki öldulíkan en hermir eftir niðurstöðum MIKE öldulíkansins og sparar pví keyrslutíma verulega. Sjóvörnum međfram Sæbrautinni voru skipt upp í 7 hluta, bar sem hver hluti tekur mið af einum reiknipunkti fyrir öldu á grunslód. Fyrri
hluti aðfferðarinnar, p.e. hermun stóra gagnasafnsins, er sameiginlegur fyrir alla punktana en með MIKE21 SW keyrslunni og hermilíkaninu skiptist verkefnið upp á milli staða. Pannig verður hætta á sjávarflóðum metin sérstaklega fyrir hvern hluta sjóvarnarinnar fyrir sig.

4.1 Afmörkun óháðra aftaka atburða

Tryggja parf að atburðirnir, sem notað̌ir eru úr tímaröðinni norðan við Garðsskaga til að herma eftir, séu óháđir aftaka atburðir. Pá er átt við̛ að ekki séu notuð̛ tvö eđa fleiri tímaskref úr sama atburðinum. Pannig eru óháð̌ir aftaka atburðir afmarkað̌ir í 40 ára langri tímaröð með peim hætti að valdir eru toppar úr tímaröðum hæðar kenniöldu, sjávarhæð og vindhraða sem eru yfir ákveð̌num pröskuldsgildum og með í pað minnsta 24 klst. millibili. pröskuldsgildið fyrir hæð kenniöldu á hafi er $4,4 \mathrm{~m}$, fyrir sjávarhæð $+1,4 \mathrm{~m}$ og $17 \mathrm{~m} / \mathrm{s}$ er pröskuldsgildi fyrir vindhrađa. Afmörkunin skilar 2113 óháðum atburðum sem notaðir eru til að herma 350.000 óháða aftakaatburði, sjá mynd 4.
Afpjöppuơ tímaröð
2113 óhádir atburðir

Ar

Mynd 4 Tímaröð fyrir hæð kenniöldu (efst), sjávarhæð (mið) og vindhraða (neðst). Tímaröðin er afbjöppuđ í óháđa atburði út frá hæð kenniöldu (rauðir punktar), sjávarhæd (grænir punktar) og vindhraða (bláir punktar).

4.2 Hermun byggt á samlíkum

Hermun gagna er tvípætt, annars vegar er Multivariate Extreme Value Modelling notað til að herma 350.000 gildi af hæð kenniöldu, vindhraða og loftprýstingsáhlaðanda út frá samlíkum
óháðra atburða. Hins vegar að nota hermdu gildin af pessum prem páttum til að herma hinar breyturnar út frá sambandi sínu viđ pá pætti sem pegar hafa verið hermdir.

Til að byrja með er General Pareto líkindadreifingin aðlöguð að afmörkuðum óháðu atburðunum, sjá mynd 5 . Líkurnar fyrir gildin sem eru fyrir ofan 80% eru færð yfir á Gumbel skala með pví að taka tvöfaldan neikvæðan logra af líkunum, $Y_{i}=-\log \left(-\log \left(f_{i}\right)\right)$. Par sem f eru líkur fyrir viðeigandi gildi í einum af premur breytunum sem verið er að herma hverju sinni, s.s. i.

Multivariate Extreme Value Modelling byggist á pví að nota jöfnuhneppi til að líkja eftir sambandi milli hæðar kenniöldu, vindhraða og loftprýstingsáhlaðanda, sbr. jöfnuna hér að neðan.

$$
\boldsymbol{Y}_{-i} \mid Y_{i}=\boldsymbol{a} Y_{i}+Y_{i}^{\boldsymbol{b}} \boldsymbol{W}
$$

Par sem Y_{-i} eru Y gildin fyrir bær tvær breytur sem skal herma og Y_{i} er skilyrta breytan sem hermt er eftir. Pá er \boldsymbol{a} fasti á bilinu]0,1[, \boldsymbol{b} er fasti á bilinu]-1, $\mathbf{1}[$ og \boldsymbol{W} eru leifar sem fylgja normaldreifingu. Jöfnuhneppið er leyst sérstaklega par sem hver breyta er skilyrta breytan međ most likelihood aðferðinni undir pví skilyrði að Y_{i} sé í topp 20\%. Pegar búið er að leysa jöfnuhneppið er pað notað með Monte Carlo aðferð til að herma 350.000 atburði par sem neđangreind fjögur skref eru endurtekin par til peim fjölda atburða er náð.

Mynd 5 Líkingadreifing (rauđ̛ir punktar) og General Pareto dreifing (bláir punktar) fyrir hæð kenniöldu (efst), loftprýstingsáhlaðanda (mið) og vindhraða (neðst) byggt á óháðum atburðum úr 40 ára tímaröðinni.

1. Handahófskennt gildi af Y_{i} er valið, gefið að pað sé í topp 20%,
2. Handahófskennt gildi af \boldsymbol{W} er valið út frá međaltali og staðalfráviki sem fundið var pegar jöfnuhneppið var leyst.
3. $\quad \boldsymbol{Y}_{-i}$ eru reiknaðar út frá jöfnu (1) međ W úr skrefi 2 og viðeigandi a og b.
4. Breyta Y aftur yfir í f og nota General Pareto dreifinguna til að fá viðeigandi gildi.

Pessi aðferð skilar 350.000 óháðum aftaka atburðum par sem í pað minnsta ein af breytunum inniheldur hátt gildi. Mynd 6 sýnir samanburð líkindadreifingar á peim prem breytum sem hermdar voru međ Monte Carlo aðferðinni og óháđu atburðunum sem Multivariate Extreme Value Modelling er byggð á.

Pær breytur sem eftir sitja, p.e.a.s. öldustefna, sveiflutími kenniöldu, vindátt og stjarnfræðileg sjávarföll eru byggðar á sambandi sínu við bær prjár breytur sem voru hermdar með Monte Carlo aðferðinni. Pá er öldustefna og sveiflutími byggð á hæð kenniöldu, vindstefna er byggð á vindhraða, og stjarnfræðileg sjávarföll byggð á loftprýstingsáhlaðanda og árstíma.

Mynd 6 Samanburður líkindadreifinga óháðra atburða (blár og rauđur) og hermunar (grænn) fyrir hæð kenniöldu (efst), loftprýstingsáhlaðanda (miđ) og vindhraða (neðst).

Á mynd 7 má sjá samanburð á dreifingu peirra 2113 óháđra atburða úr 40 ára tímaröðinni (rauđir punktar) og hermun 350.000 óháðra aftaka atburða út frá 40 ára tímaröðinni (bláir punktar). Hermdu atburðirnir fylgja dreifingu aftaka atburðanna úr tímaröðinni að mestu leiti auk bess sem hærri útgildi fást. Petta ganasafn af 350.000 hermdum aftaka atburðum er síðan flutt af hafi og inn ađ grunnslóð við Sæbraut í beim tilgangi að nota pá við mat á ágjöf yfir núverandi sjóvarnir.

4.3 Safn aftaka atburða flutt upp að ströndinni

Til að sjá hvernig pessir atburðir hegða sér á grunnslóð við Reykjavík eru atburðirnir færðir af hafi, frá mynni Faxaflóa og upp að völdum stöðum við Sæbrautina. Vegagerðin notar öldulíkanið MIKE21 SW til að flytja ölduatburði úr úthafspunkti á hafi og upp að ströndinni. Hér er MIKE öldulíkanið notað saman með Meta Model hermilíkani sem byggir á Radial Basis falli til að færa alla 350.000 atburðina á grunnslóðir. Pessar tvær aðferðir eru notaðar saman pví óraunhæft er að flytja alla 350.000 atburðina að grunnslóð með öldulíkaninu vegna of langs reiknitíma. Pess í stað eru 500 hönnunaratburðir valdir úr hermda gagnasafninu sem eru lýsandi fyrir pað hvernig punktaský 350.000 atburðanna hegðar sér, sjá mynd 8, og peir keyrðir međ MIKE21 SW. Niðurstöðurnar úr keyrslunni ásamt hönnunaratburðunum eru notaðir til að hanna hermilíkanið sem lýsir sambandi milli atburðanna úr mynni Faxaflóa og á grunnslóð við Sæbraut. Líkanið sem lýsir sambandi atburða á pessum tveim stöðum er síðan notað til að færa alla 350.000 atburðina á grunnslóð. Frekari lýsing á Meta Model hermilíkaninu og Multivariate Extreme Value Modelling
aðferðinni má finna í meistaraverkefninu Mat á aftaka sjávarflóðum: Innleiðing aðferða sem byggist á samlíkum útgilda (Bryndís Tryggvadóttir, 2020).

Mynd 7 Vind- og haffræð̃ileg gögn 350.000 óháðra aftaka atburða úr hermun (bláir punktar) borin saman við dreifingu óháðra aftaka atburða úr 40 ára tímaröðinni (rauđ̃ir punktar).

Mynd 8 Vind- og haffræðileg gögn hönnunaratburða (gulir punktar) sem valdir eru úr 350.000 atburða hermuninni (bláir punktar)

4.3.1 Aftaka flóðaatburðir við Sæbraut

Sjóvörnum við Sæbraut hefur verið skipt upp í sjö hluta, par sem hver hluti tekur miđ af einum reiknipunkti fyrir öldu úr líkankeyrslu MIKE21 SW, S1-S7, sjá mynd 9. Reiknipunktarnir eru allir á 10 m dýpi nema S 7 sem er á $5,5 \mathrm{~m}$ dýpi. Meta Model hermilíkanið var aðlagað að hverjum punkti fyrir sig og notað til að flytja alla 350.000 aftaka atburðina að peim 7 punktum sem eru til athugunar. Á mynd 10 má sjá niðurstöður hermilíkansins fyrir punktinn S1 ásamt hönnunaratburðum sem fluttir voru að grunnslóð með MIKE21 SW. Mynd 11 sýnir samanburð á endurkomutíma kenniöldu í hverjum punkti. Par má sjá að hæð kenniöldu við austari hluta Sæbrautarinnar er almennt hærri en við vestari hluta hennar.

Mynd 9 Staðsetning reiknipunkta á grunnslóð við Sæbraut sem notaðar eru til ađ meta sjóvarnir á bví svæði sem er næst punktunum.

Hermdir atburð̊ir á grunnslóð, S1

Mynd 10 Vind- og haffræð̊ileg gögn í punkti S1 á 10 m dýpi. Hönnunaratburðirnir (gulir punktar) voru fluttir upp að landi međ MIKE21 SW öldulíkani. Gagnasafnið í heild sinni (bláir punktar) var síðan flutt að landi með Meta Model sem byggir á hönnunaratburðunum.

Mynd 11 Samanburður á hæð kenniöldu viđ hvern hluta sjóvarnarinnar viđ Sæbraut sem miðast við reiknipunkta öldu S1 til S7.

4.4 Vind- og ölduáhlaðandi á grunnslóð

Lagt var mat á endurkomutíma sjávarhæðar með og án áhlað̃anda, bar á meðal vindáhlaðanda og ölduáhlaðanda sem metnir voru með aðferðum sem fjallað var um í kafla 3. Niðurstöður fyrir hafsvæđið við Sæbraut má sjá í töflu 2 og mynd 12. Allar hæð̃ir gefnar í hæðarkerfi Reykjavíkur. Vindáhlaðandi á bessum svæðum er mjög lítill bar sem hann er ađ jafnađi innan við $0,5 \mathrm{~cm}$. Pví falla ferlarnir fyrir eingöngu brýstingsáhlaðanda og bæði brýstings- og vindáhlað̃anda alveg saman. Pá hefur ölduáhlaðandi eilítið meiri áhrif á sjávarstöðuna par sem ölduáhlað̃andinn er að jafnaði um eđa undir 7 cm .

Tafla 2 Endurkomutími sjávarhæðar við með mismunandi samsetningu á áhlað̃anda. Hæðir í hæðarkerfi Reykjavikur.

Endur- komutími [ár]	Sjávarhæð hjá Sæbraut [m] Stjarnfræðileg sjávarhæð	Með prýstingsáhl.	Með vind- og brýstingsáhl.	Með vind-, öldu- og prýstingsáhl.
	2,61	2,86	2,86	2,91
$\mathbf{1 0}$	2,74	3,07	3,07	3,12
$\mathbf{1 0 0}$	2,79	3,25	3,25	3,31
$\mathbf{1 0 0 0}$	2,80	3,35	3,35	3,40

Mynd 12 Endurkomutími sjávarhæðar við Sæbraut međ̃ mismunandi samsetningu á áhlaðanda. Par sem vindáhlað́andi bætir engu viđ prýstingsáhlaðanda bá liggur græna línan á beirri appelsínugulu. Hæðir í hæðarkerfi Reykjavíkur.

5 Mat á ágjöf yfir flóðvarnargarð

5.1 Viðmiððunarkröfur fyrir ágjöf samkvæmt EurOtop 2018

Ágjafaleiðarvísirinn EurOtop 2018 setur fram viðmiðunarkröfur fyrir ágjöf við margskonar aðstæður. Annars vegar eru settar viðmiðunarkröfur fyrir međalágjöf yfir ákveđið tímabil og hins vegar fyrir mestu ágjöf stakrar öldu í aftaka atburði. Par sem um er að ræða flóðahættu er eðlilegt að miða við meðalágjöf yfir ákveðið tímabil, en par sem um er að ræða hættu fyrir fótgangandi eđa akandi umferð er einnig hægt að miða við mestu ágjöf í stakri öldu.
Í EurOtop 2018 leiðarvísinum eru ýmsar kröfur settar fram um međalágjöf yfir flóðvarnargarða. Pað fer allt eftir aðstæðum, hvort fólki eđa byggingum stafi hætta af og hvort hætta sé á að garðurinn sjálfur skemmist. Pá parf einnig að taka tillit til eðli atburðanna. Við aðstæður líkt og finnast við Sæbraut, par sem ágjöf verður helst í hvassviðri pegar norðanátt feykir stuttum kröppum öldum sem ná yfir sjóvörnina langar vegalengdir. Samkvæmt leiðarvísinum má pví áætla að raunveruleg ágjöf yfir sjóvörnina sé í raun fjórfalt meiri en reiknanlegar aðferðir gefa til kynna. Petta parf að hafa í huga pegar hámarkságjöf er borin saman við reiknaðar niðurstöður.
Pegar um er að ræða aðstæður par sem gangandi vegfarendur eru að jafnaði á ferli mjög nálægt sjóvörninni, skal taka tillit til peirri hættu sem ágjöf getur skapað. Petta á við um staði par sem göngustígar, bílastæði eða athafnasvæði fyrir almenning, liggja upp við sjóvörnina. Í tilfellum sem að jafnaði koma einu sinni á ári við slíkar aðstæður er miðað við að vegfarendur sem eru viðbúnir og kippa sér ekki upp við að blotna við aðstæður par sem sést til sjávar. Pá skal međalágjöf ekki fara yfir $0,1 \mathrm{l} / \mathrm{s} / \mathrm{m}$ og mesta ágjöf stakrar öldu skal vera innan við $50 \mathrm{l} / \mathrm{m}$. Öryggisviðmið pess sem er öruggt fyrir vana og vel búna er meðalágjöf 1 til $10 \mathrm{l} / \mathrm{s} / \mathrm{m}$ og hámarkságjöf stakrar öldu $500-2000 \mathrm{l} / \mathrm{m}$. Hér er valið að setja neðri mörk öryggisviðmiðsins sem viðmið fyrir 10 ára endurkomutíma og efri mörk sem viðmið fyrir 100 ára endurkomutíma við aðstæður par sem almennir vegfarendur eru á gangi.

Pað skal tekið fram að við ákvörðun á viðmiðunarkröfum felst ákveðið val par sem tekið er tillit til ýmissa pátta. Eftir aðstæðum er mögulegt að gera strangari kröfur eđa veikari.

Tafla 3 Valdar viðmiðunarkröfur um hámarkságjöf m.v. endurkomutíma fyrir sjóvarnargarða við Sæbraut

Endurkomutími	Medalágjöf $\mathbf{q}[\mathbf{l} / \mathbf{s} / \mathbf{m}]$	Mesta ágï̈f $\mathbf{V}_{\text {max }}[\mathbf{l} / \mathbf{m}]$
$\mathbf{1}$ ár	$0, \mathbf{1}$	50
$\mathbf{1 0}$ ár	1	500
$\mathbf{1 0 0 + \text { ár }}$	10	2000

5.2 Ágjöf yfirr flóð̌varnargarð

Fyrir hvern atburð̀ í hermda gagnasafninu er ágjöf yfir núverandi varnagarða metin međ jöfnu 6.6 úr EurOtop 2018 ágjafarleiðarvísinum, rituð hér fyrir neðan. Jafnan byggir á međaltali af niðurstöðum líkantilrauna víđ̋s vegar að auk öryggismarka og skilar svokallaðri hönnunarágjöf sjóvarnar. Pessi jafna er notuð til að meta ágjöf, $\mathrm{q}[\mathrm{l} / \mathrm{s} / \mathrm{m}]$, yfir varnargarð með fláa á bilinu 1:2 til $1: 4 / 3$.

$$
\frac{q}{\sqrt{g \cdot H_{m 0}^{3}}}=0,1035 \cdot \exp \left[-\left(1,35 \frac{R_{c}}{H_{m 0} \cdot \gamma_{f} \cdot \gamma_{\beta}}\right)^{1,3}\right]
$$

Hér er $H_{m 0}$ hæð kenniöldu við tá varnargarðsins, R_{c} er fríborð, p.e. hæðarmunur milli sjávarhæðar og landhæðar bakvið varnargarðinn, $\gamma_{f}=0,6$ er hrífnistuðull grjótgarðs með meðalgleypni, γ_{β} er
áhrif öldustefnu sem getur mest verið 1 fyrir öldu sem streymir hornrétt á varnargarðinn. Vegna eðli atburða á pessu svæði, sem áður er lýst, er q margfaldað með 4 til að fá lokaniðurstöðu ágjafar.

Fyrir varnargarð með bermu skal gera ráð fyrir bermunni í útreikningum á ágjöf. Til pess eru ýmsar aðferðir, bar á meðal að nota Neural Network sem byggir á hermunum með ýmsum aðferðum eđa notast við EurOtop 2018 leiðarvísinn sjálfan. Fyrir stórt gagnasafn líkt og unnið er međ að pessu sinni pá hentar betur að nota jöfnurnar úr EurOtop 2018. Jafna 6.10, hér fyrir neðan, gefur hönnunarlágjöf yfir varnargarð með bermu:

$$
\frac{q}{\sqrt{g \cdot H_{m 0}^{3}}}=0,1035 \cdot \exp \left[-\left(1,35 \frac{R_{c}}{H_{m 0} \cdot \gamma_{B B} \cdot \gamma_{\beta}}\right)^{1,3}\right]
$$

Jafnan byggist á jöfnu 6.6 par sem bermustuđull, γ_{BB}, hefur tekið við af hrífnistuđlinum í jöfnu 6.6 úr EurOtop 2018. Bermustuđulinn má reikna međ eftirfarandi jöfnu (jafna 6.11 í EurOtop 2018):

$$
\gamma_{B B}=0,68-4,1 \cdot s_{m-1,0}-0,05 \frac{B}{H_{m 0}}
$$

eða jöfnu 4.11 í Design and construction of berm breakwaters (van der Meer og Sigurður Sigurðarson, 2016), par sem $s_{m-1,0}$ er krappleiki öldur og B er breidd bermu. Vegna eðli atburða á bessu svæði er q margfaldað með 4 til að fá lokaniðurstöðu ágjafar, eins og kemur fram hér að ofan.

Mesta ágjöf stakrar öldu tekur tillit bæði til ágjafar sem og fjölda alda sem ná yfir krónu sjóvarnarinnar. Jafna 4.6 úr EurOtop 2018 skilar mati á mestu ágjöf íl/m fyrir staka öldu í atburði.

$$
V_{\max }=a \cdot\left[\ln \left(N_{o w}\right)\right]^{1 / b}
$$

Par sem:

$$
\begin{array}{ll}
a \text { er stuðull } & a=\left(\frac{1}{\Gamma\left(1+\frac{1}{b}\right)}\right) \cdot\left(\frac{q T_{m}}{p_{o v}}\right) \\
b \text { er stuðull } & b=0.85+1500\left(\frac{q}{g H_{m 0} T_{m-1,0}}\right)^{1.3} \\
p_{o v} \text { eru líkur að alda gefi yfir } & p_{o v}=\exp \left[-\left(\sqrt{-\ln 0.02} \frac{R_{c}}{R_{u, 2 \%}}\right)^{2}\right] \\
R_{u, 2 \%} \text { er 2\% upprennsli } & R_{u, 2 \%}=1.75 \cdot H_{m 0} \cdot \gamma_{f} \cdot \xi_{m-1,0} \quad \text { ef } \xi_{m-1,0}<1.8 \\
& R_{u, 2 \%}=1.07 \cdot H_{m 0} \cdot \gamma_{f} \cdot\left(4.0-\frac{1.5}{\sqrt{\xi_{m-1,0}}}\right) \text { ef } \xi_{m-1,0}>1.8 \\
\xi_{m-1,0} \text { Breaker parameter } & \xi_{m-1,0}=\frac{\tan \alpha}{\sqrt{s_{m-1,0}}} \\
N_{o w} \text { er fjöldi alda sem gefur yfir } & N_{o w}=p_{o v} \cdot N_{w} \\
N_{w} \text { er fjöldi alda á klst } & N_{w}=\frac{3600}{T_{m-1,0}}
\end{array}
$$

Pá er $T_{m-1,0}$ sveiflutími öldu upp við sjóvörnina og q er reiknað með ofangreindum jöfnum eftir pví hvort um sé að ræða sjóvörn með eða án bermu.

6 Sjóvarnir við Sæbraut

Stóra gagnasafnið fyrir aftakaatburði í reiknipunktum S1 til S7 var notað til að meta ágjöf yfir núverandi sjóvarnir međfram peim hluta Sæbrautar sem liggur milli Hörpu og Kirkjusands. Hæðarmæling á sjóvörninni var framkvæmd í apríl 2021 og miðast stærð og lögun sjóvarnarinnar við pá mælingu. Pversnið sjóvarnarinnar var skoðað í sniðum með 100 m millibili. Í hverju pversniði var metið hæð sjóvarnarinnar (krónuhæð), flái hennar, breidd krónu og krónuhæð yfir landi, sjá töflu 4. Í töflunni má einnig sjá hvaða reiknipunkti (S1-S7) pversniðin tilheyra. Allar hæðir í töflunni eru í hæðarkerfi Reykjavíkur. Staðsetningar pversniðanna má sjá á mynd 13 og dæmi um pversniđ núverandi sjóvarnar má sjá á mynd 14.

Mynd 14 Yfirlitsmynd yfir sjóvörnina við Sæbraut, staðsetningu stöðva og reiknipunkta fyrir öldu á grunnslóð séð ofan frá.

Mynd 13 Dæmi um pversniðsmælingu tveggja stöðva (700 og 1000) sem notuð var til að ákvarða fláa, krónuhæð og landhæð bakvið sjóvörn.

Reiknư var ágjöf fyrir núverandi krónuhæð auk pess sem ágjöf var metin fyrir sjóvarnir međ hærri krónu og/eða með 2 m eða 4 m breiðri bermu par sem berman er íkóta í +4 míhæðarkerfi Reykjavíkur. Mat ágjafar fyrir áhrifasvæði S1 til S7 má sjá hér á eftir í köflum 6.1-6.7.

Vegna bess hvað sjávarstaða spilar stóran bátt í hættu á ágjöf er vert að meta hver ágjöf yfir sjóvörn yrði begar sjávarstaða hefur hækkað vegna hnattrænnar hlýnunar. Pví voru ágjafarreikningar endurteknir međ tilliti til hækkunar á sjávarstöðu og niðurstöðurnar settar fram í töflum í köflum 6.1 til 6.7. Í pessu tilfelli verður ágjöf metin miðað við breytingu á sjávarstöðu eftir 30 ár og í lok aldarinnar. Breytingar á sjávarstöðu vegna hnattrænnar hlýnunar hjá höfuðborgarsvæðinu er metin sem 24 cm hækkun eftir 30 ár og 54 cm hækkun fyrir árið 2100 .

Fyrir hvert áhrifasvæði er ágjöfin fyrst sýnd á gröfum. Efra grafiđ sýnir ágjöf íl/s/m fyrir núverandi hæð sjóvarnar á viđkomandi svæðinu og með hækkun eða $2 \mathrm{~m} / 4 \mathrm{~m}$ bermu. Neðra grafið sýnir ágjöf einnar stakrar öldu fyrir sömu hæðir og tegundir sjóvarnargarða og grafið fyrir ofan.

Pá er reiknuð ágjöf fyrir hvern punkt sýnd í fjórum töflum, par sem tvær efstu töflurnar sýna niđurstöður ágjafar miðað við núverandi sjávarstöðu en neðri tvær með tilliti til hækkun á
sjávarstöðu. Efri taflan fyrir núverandi sjávarstöðu sýnir niðurstöður ágjafar íl/s/m og neðri sýnir niðurstöður um mestu ágjöf stakrar öldu íl/m. Pá sýna töflurnar fyrir ágjöf með tilliti til hækkun sjávarstöđu ágjöfina íl/s/m. Töflurnar eru prískiptar, fyrst mismunandi hæðir án bermu, pá mismunandi hæðir með 2 m breiðri bermu og síðan með 4 m breiðri bermu.

Tafla 4 Krónuhæð sjóvarnar við Sæbraut í hæðarkerfi Reykjavíkur ásamt fláa hennar, breidd krónu og hæð landsvæðis bakvið sjóvörnina, göngustígs.

Reiknipunktur	Stöð	Krónuhæð	Нæð göngustígs	Krónuhæð yfir landi [m]	Flái	Breidd krónu [m]
S1	100	+4.5	+4.2	0.3	1:1,5	2
	200	+5.2	+4.8	0.4	1:1	2.5
	300	+5.3	+4.8	0.5	1:1,5	2
S2	400	+5.4	+4.8	0.6	1:1,5	1.5
	500	+5.1	+5.1	0.0	1:1,5	2.5
	600	+5.4	+5.1	0.3	1:1,5	3
S3	700	+4.8	+4.2	0.6	1:1,5	3
	800	+4.5	+3.8	0.7	1:1,5	3
	900	+4.5	+4.0	0.5	1:1,5	3.5
S4	1000	+5.7	+5.2	0.5	1:1,5	3.5
	1100	+5.8	+5.3	0.5	1:1	2.5
	1200	+6.3	+5.7	0.6	1:1,5	2.5
S5	1300	+5.8	+5.4	0.4	1:1,5	2.5
	1400	+5.7	+5.7	0.0	1:1,5	2
S6	1500	+5.5	+5.1	0.4	1:1,5	3
	1600	+5.6	+5.2	0.4	1:1,5	4
	1700	+5.3	+5.0	0.3	1:1,5	3
	1800	+5.2	+4.7	0.5	1:1,5	2
S7	1900	+4.8	+4.5	0.3	1:1,5	3
	2000	+5.8	+5.4	0.4	1:1,5	3.5
	2100	+7.2	+6.8	0.4	1:1,5	2.5
	2200	+9.3	+8.6	0.7	1:1,5	2.5

6.1 Ágjöf hjá reiknipunkti S1

Endurkomutími ágjafar (S1)

Mynd 15 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiðrar bermu

Mesta ágjöf einnar öldu í atburði (S1) - Endurkomutími

Mynd 16 Endurkomutími mestu ágjafar einnar öldu yfir sjóvarnir međ núverandi og hærri krónuhæð, međ og án 2/4m breiðrar bermu

Tafla 5 S1: Ágjöf í [l/s/m]og [l/m] yfir mismunandi samsetningar af varnargörðum međ núverandi krónuhæð, hækkun og međ eđa án 2 m og 4 m breiðrar bermu. Gildi sem eru lituð rauđ uppfylla ekki kröfur um takmörk ágjafar međ viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar. Pær hæð̀ir sem eru með bláan bakgrunn eru krónuhæð̌ir stöðva á bessu áhrifasvæð̇.

Ágjöf [l/s/m]										
Endurk. tími	Án Bermu				Med 2m bermu			Me才 4m bermu		
	+4.5m	+4.8m	+5.2m	+5.3m	+4.5m	+4.8m	+5.2m	+4.5m	+4.8m	+5.2m
1	0.034	0.002	0	0	0	0	0	0	0	0
10	1.3	0.12	0.004	0.002	0.087	0.003	0	0	0	0
100	10	1.4	0.083	0.04	1.8	0.12	0.003	0.035	0	0

Ágjöf einnar öldu [l/m]										
Endurk. tími	Án Bermu				Með 2 m bermu			Med 4m bermu		
	+4.5m	+4.8m	+5.2m	+5.3m	+4.5m	+4.8m	+5.2m	+4.5m	+4.8m	+5.2m
1	38	0	0	0	0.17	0	0	0	0	0
10	481	116	0	0	36	2.9	0	0.029	0	0
100	1446	538	90	42	321	54	2.7	7	0.001	0

Á áhrifasvæði S1 eru stöðvar 200 (+5.2 m) og 300 (+5.3 m) vel undir mörkum um ágjöf á meðan stöð 100 (+4.5 m) er á mörkunum að̃ ná yfir ásættanleg mörk ágjafar. Meðalágjöf íl/s/m hjá stöð 100 fer aðeins yfir mörkin í 10 og 100 ára atburðunum en ágjöf einnar öldu eru rétt undir mörkunum fyrir pá atburði. Petta getur leitt til vandræð̃a seinna meir líkt og sjá má á niðurstöðum um ágjöf eftir hækkun sjávarstöðu eftir 30 ár, tafla 6 . Pá mun ágjöf yfir sjóvörnina við stöð 100 ná verulega yfir mörkin um ásættanlega ágjöf. Til að ágjöfin fari undir viðmið̛unarmörk í stöð 100 par annað hvort að̃ hækka sjóvörnina um 0,3 mí +4,8 m eða að bæta 4 m breið̛ri bermu á meðan að 2 m breið berma er ekki nægjanleg. Við lok aldarinnar pegar að sjávarborð hefur hækkað um 54 cm parf annað hvort að hækka sjóvörnina í stöð 100 um 0,7 mí +5,2 m eða hækka hana um $0,3 \mathrm{~m}$ með 4 m breiðri bermu.

Tafla 6 S1: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, með og án hækkun og/eð̃a bermu.

Ágjöf eftir 24 cm hækkun sjávar [$/$ /s/m]										
Endurk. timi	Án Bermu				Med 2 m bermu			Med 4m bermu		
	+4.5m	+4.8m	+5.2m	+5.3m	+4.5m	+4.8m	+5.2m	+4.5m	+4.8m	+5.2m
1	0.37	0.018	0	0	0.007	0	0	0	0	0
10	8.1	0.83	0.031	0.013	1.2	0.044	0	0.005	0	0
100	47	6.8	0.46	0.23	16	1.1	0.027	0.93	0.016	0

Ágjöf eftir 54 cm hækkun sjávar [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]										
Endurk. tími	Án Bermu				Med 2 m bermu			Med 4m bermu		
	+4.5m	+4.8m	+5.2m	+5.3m	+4.5m	+4.8m	+5.2m	+4.5m	+4.8m	+5.2m
1	6	0.37	0.007	0.002	0.49	0.007	0	0	0	0
10	68	8.1	0.38	0.17	25	1.2	0.014	1.2	0.005	0
100	242	47	3.4	1.8	164	16	0.43	57	0.93	0.004

6.2 Ágjöf hjá reiknipunkti S2

Endurkomutími ágjafar (S2)

Mynd 17 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiðrar bermu

Mynd 18 Endurkomutími mestu ágjafar einnar öldu yfir sjóvarnir međ núverandi og hærri krónuhæð, međ og án 2/4m breiðrar bermu

Tafla 7 S2: Ágjöf í $7 \mathrm{l} / \mathbf{s} / \mathrm{m}]$ og [l/m] yfir mismunandi samsetningar af varnargörðum međ núverandi krónuhæð, hækkun og međ eđa án 2 m og 4 m breiðrar bermu. Gildi sem eru lituð raữ uppfylla ekki kröfur um takmörk ágjafar með viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar. Pær hæðir sem eru með bláan bakgrunn eru krónuhæð̌ir stöðva á bessu áhrifasvæð̇.

Ágjöf [l/s/m]							
Endurk. timi	Án Bermu			Med 2m bermu		Med 4m bermu	
	+5.1m	+5.4m	+5.6m	+5.1m	+5.4m	+5.1m	+5.4m
1	0.002	0	0	0	0	0	0
10	0.11	0.013	0.003	0.006	0	0	0
100	1.1	0.18	0.053	0.15	0.015	0.002	0

Ágjöf einnar öldu [l / m]							
Endurk. timi	Án Bermu			Med 2m bermu		Med 4m bermu	
	+5.1m	+5.4m	+5.6m	+5.1m	+5.4m	+5.1m	+5.4m
1	0	0	0	0	0	0	0
10	120	0	0	6	0	0.008	0
100	560	181	54	88	15	1.5	0.096

Sá hluti sjóvarnarinnar sem liggur á áhrifasvæði punktsins S2 stenst pær kröfur sem lagðar voru fram í kafla 5.1 um takmörk ágjafar yfir sjóvörnina.

Miðað við niðurstöður um ágjöf með tilliti til hækkun sjávarborðs, tafla 8, má búast við pví að ágjöf á pessu svæði ná ekki yfir pröskulda um hámarks ágjöf fyrr en pað fer að nálgast lok aldarinnar.

Tafla 8 S2: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, með og án hækkun og/eða bermu.

Ágjöf eftir 24 cm hækkun sjávar [$/$ /s/m]							
Endurk. timi	Án Bermu			Med 2 m bermu		Med 4m bermu	
	+5.1m	+5.4m	+5.6m	+5.1m	+5.4m	+5.1m	+5.4m
1	0.015	0.001	0	0	0	0	0
10	0.55	0.072	0.018	0.051	0.003	0	0
100	4.2	0.75	0.23	0.92	0.094	0.031	0.001

Ágjöf eftir 54 cm hækkun sjávar [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]							
Endurk. tími	Án Bermu			Med 2 m bermu		Med 4m bermu	
	+5.1m	+5.4m	+5.6m	+5.1m	+5.4m	+5.1m	+5.4m
1	0.19	0.015	0.003	0.008	0	0	0
10	3.9	0.55	0.14	0.68	0.051	0.011	0
100	21	4.2	1.4	7.5	0.92	0.7	0.031

6.3 Ágjöf hjá reiknipunkti S3

Endurkomutími ágjafar (S3)

Mynd 19 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiðrar bermu

Tafla 9 S3: Ágjöf í $[\mathrm{l} / \mathbf{s} / \mathrm{m}]$ og [l/m] yfir mismunandi samsetningar af varnargörðum međ núverandi krónuhæð, hækkun og með eđa án 2 m og 4 m breiðrar bermu. Gildi sem eru lituđ̃ rauđ uppfylla ekki kröfur um takmörk ágjafar međ viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar. Pær hæð̀ir sem eru með bláan bakgrunn eru krónuhæðir stöðva á bessu áhrifasvæði.

Ágjöf [$1 / \mathrm{s} / \mathrm{m}$]							
Endurk. timi	Án Bermu			Med 2m bermu		Med 4m bermu	
	+4.5m	+4.8m	+5.0m	+4.5m	+4.8m	+4.5m	+4.8m
1	0.7	0.072	0.015	0.063	0.003	0	0
10	10	1.7	0.52	2.7	0.28	0.14	0.005
100	45	10	3.7	21	3.3	3.8	0.28

Ágjöf einnar öldu [l/m]							
Endurk. timi	Án Bermu			Med 2 m bermu		Med 4m bermu	
	+4.5m	+4.8m	+5.0m	+4.5m	+4.8m	+4.5m	+4.8m
1	391	82	0.67	38	3.3	0.089	0.001
10	1770	728	366	543	128	31	2.5
100	3946	2004	1192	2260	746	473	67

Við mat á ágjöf við stöðvar 700, 800 og 900 á áhrifasvæði S3 leiða niðurstöður í ljós að ágjöf nær vel yfir pröskulda um hámarkságjöf, bá sérstaklega á stöðvum 800 og 900 par sem krónuhæð er +4.5 m . Hér er áhugavert að sjá hvað $2-4 \mathrm{~m}$ breið berma takmarkar ágjöfina mikið. Fyrir stöð 800 og 900 myndi $2 m$ breið berma minnka ágjöfina úr pví að vera verulega yfir hámarkságjöf niður í að fara rétt rúmlega yfir pröskuldana.

Með hækkun sjávar má búast við pví að ástandið á pessu svæði mun fara versnandi, par sem atburðir með eins árs til 10 ára endurkomutíma geta orðið hættulegir gangandi vegfarendum á svæðinu.

Tafla 10 S3: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, međ og án hækkun og/eđ̃a bermu.

Ágjöf eftir 24 cm hækkun sjávar [l/s/m]							
Endurk. tími	Án Bermu			Međ 2m bermu		Med 4m bermu	
	+4.5m	+4.8m	+5.0m	+4.5m	+4.8m	+4.5m	+4.8m
1	3.9	0.45	0.099	0.62	0.036	0.005	0
10	38	7.2	2.2	15	1.7	1.7	0.073
100	136	34	12	83	14	28	2.3

Ágjöf eftir 54cm hækkun sjávar [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]									
Endurk. tími	Án Bermu			Med 2m bermu			Med 4m bermu		
	+4.5m	+4.8m	+5.0m	+4.5m	+4.8m	+5.0m	+4.5m	+4.8m	+5.0m
1	29	3.9	0.93	9.5	0.62	0.093	0.42	0.005	0
10	173	38	12	109	15	3.6	36	1.7	0.21
100	453	136	53	385	83	26	262	28	5.2

6.4 Ágjöf hjá reiknipunkti S4

Endurkomutími ágjafar (S4)

Mynd 21 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiðrar bermu

Mynd 22 Endurkomutími mestu ágjafar einnar öldu yfir sjóvarnir međ̃ núverandi og hærri krónuhæð, með og án 2/4m breiðrar bermu

Tafla 11 S4: Ágjöf í [l/s/m] og [l/m] yfir mismunandi samsetningar af varnargörðum með núverandi krónuhæð, hækkun og međ eđa án 2 m og 4 m breiðrar bermu. Gildi sem eru lituð rauđ̃ uppfylla ekki kröfur um takmörk ágjafar međ viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar. Pær hæðir sem eru med bláan bakgrunn eru krónuhæð̌ir stöðva á bessu áhrifasvæði.

Ágjöf [l/s/m]										
Endurk. tími	Án Bermu				Med 2 m bermu			Med 4m bermu		
	+5.7m	+5.8m	+6.3m	+6.5m	+5.7m	+5.8m	+6.3m	+5.7m	+5.8m	+6.3m
1	0.002	0.001	0	0	0	0	0	0	0	0
10	0.082	0.048	0.003	0.001	0.008	0.004	0	0	0	0
100	0.69	0.44	0.039	0.015	0.15	0.086	0.005	0.009	0.005	0

Ágjöf einnar öldu [l/m]										
Endurk. tími	Án Bermu				Med 2 m bermu			Med 4m bermu		
	+5.7m	+5.8m	+6.3m	+6.5m	+5.7m	+5.8m	+6.3m	+5.7m	+5.8m	+6.3m
1	0	0	0	0	0	0	0	0	0	0
10	90	38	0	0	7.1	2.3	0	0.078	0.016	0
100	534	393	12	0	127	83	0.64	7.7	4.3	0.006

Sá hluti sjóvarnarinnar sem liggur á áhrifasvæði punktsins S4 stenst pær kröfur sem lagðar voru fram í kafla 5.1 um takmörk ágjafar yfir sjóvörnina.

Miðað við niðurstöđur um ágjöf með tilliti til hækkun sjávarborðs, tafla 12, má búast við pví að ágjöf á pessu svæði ná ekki yfir pröskulda um hámarks ágjöf fyrr en pað fer að nálgast lok aldarinnar.

Tafla 12 S4: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, með og án hækkun og/eđ̃a bermu.

Ágjöf eftir 24 cm hækkun sjávar [l/s/m]										
Endurk. tími	Án Bermu				Med 2 m bermu			Med 4m bermu		
	+5.7m	+5.8m	+6.3m	+6.5m	+5.7m	+5.8m	+6.3m	+5.7m	+5.8m	+6.3m
1	0.008	0.004	0	0	0	0	0	0	0	0
10	0.29	0.17	0.011	0.004	0.039	0.02	0.001	0.001	0	0
100	2	1.3	0.13	0.047	0.58	0.34	0.02	0.049	0.025	0.001

Ágjöf eftir 54cm hækkun sjávar [l/s/m]										
Endurk. tími	Án Bermu				Með 2m bermu			Med 4m bermu		
	+5.7m	+5.8m	+6.3m	+6.5m	+5.7m	+5.8m	+6.3m	+5.7m	+5.8m	+6.3m
1	0.063	0.032	0.001	0	0.005	0.002	0	0	0	0
10	1.4	0.83	0.059	0.02	0.27	0.14	0.005	0.012	0.005	0
100	7.7	5	0.52	0.21	2.8	1.6	0.11	0.4	0.2	0.006

6.5 Ágjöf hjá reiknipunkti S5

Endurkomutími ágjafar (S5)

Mynd 23 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiơrar bermu

Mynd 24 Endurkomutími mestu ágjafar einnar öldu yfir sjóvarnir með núverandi og hærri krónuhæð, með og án 2/4m breiðrar bermu

Tafla 13 S5: Ágjöf í [l/s/m] og [l/m] yfir mismunandi samsetningar af varnargörðum međ núverandi krónuhæð, hækkun og međ eda án 2 m og 4 m breiðrar bermu. Gildi sem eru lituð rauđ uppfylla ekki kröfur um takmörk ágjafar međ viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar. Pær hæðir sem eru með bláan bakgrunn eru krónuhæð̌ir stöðva á bessu áhrifasvæð̇.

Ágjöf [l/s/m]							
Endurk. tími	Án Bermu			Med 2m bermu		Med 4m bermu	
	+5.7m	+5.8m	+6.0m	+5.7m	+5.8m	+5.7m	+5.8m
1	0.013	0.007	0.002	0.001	0	0	0
10	0.4	0.25	0.098	0.073	0.042	0.004	0.002
100	2.8	1.9	0.85	1	0.64	0.15	0.083

Ágjöf einnar öldu [l/m]							
Endurk. tími	Án Bermu			Með 2m bermu		Med 4m bermu	
	+5.7m	+5.8m	+6.0m	+5.7m	+5.8m	+5.7m	+5.8m
1	0	0	0	0	0	0	0
10	375	268	108	69	42	3.4	1.7
100	1393	1124	704	559	414	84	55

Sá hluti sjóvarnarinnar sem liggur á áhrifasvæði punktsins S5 stenst pær kröfur sem lagðar voru fram í kafla 5.1 um takmörk ágjafar yfir sjóvörnina. Pó má nefna að ágjöf atburða me 10 ára endurkomutíma yfir stöð 1400, með krónuhæð í +5.7 m , er ekki langt fyrir neðan pröskuldinn um hámarkságjöf, hvort sem pað er tekið mið af ágjöf íl/s/m eða mestu ágjöf stakrar öldu íl/m.

Niðurstöður við mati á ágjöf með tilliti til 24 cm hækkunar sjávarstöðu leiðir íljós að pað er einmitt stöð 1400 sem er á mörkunum að standast pær kröfur sem gerðar eru til sjóvarnarinnar. Pá má búast við pví að ágjöf nær verulega yfir pröskulda um hámarkságjöf í lok aldarinnar við stöð 1400, sem og að ágjöf á beim tíma við stöð 1500 muni einni ná yfir pröskulda hámarkságjafar ef varnargarðurinn helst óbreyttur.

Tafla 14 S5: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, međ og án hækkun og/eđ̃ bermu.

Ágjöf eftir 24cm hækkun sjávar [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]							
Endurk. timi	Án Bermu			Med 2 m bermu		Med 4m bermu	
	+5.7m	+5.8m	+6.0m	+5.7m	+5.8m	+5.7m	+5.8m
1	0.052	0.029	0.009	0.005	0.003	0	0
10	1.2	0.76	0.3	0.27	0.16	0.02	0.01
100	7.1	4.8	2.2	2.9	1.	0.57	0.32

Ágjöf eftir 54cm hækkun sjávar [l/s/m]							
Endurk. tími	Án Bermu			Me才 2m bermu		Med 4m bermu	
	+5.7m	+5.8m	+6.0m	+5.7m	+5.8m	+5.7m	+5.8m
1	0.29	0.16	0.052	0.042	0.021	0.001	0
10	4.5	2.9	1.2	1.3	0.79	0.15	0.078
100	22	15	7.1	11	7.2	2.8	1.6

6.6 Ágjöf hjá reiknipunkti S6

Endurkomutími ágjafar (S6)

Mynd 25 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiðrar bermu

Mesta ágjöf einnar öldu í atburði (S6) - Endurkomutími

Mynd 26 Endurkomutími mestu ágjafar einnar öldu yfir sjóvarnir međ núverandi og hærri krónuhæð, međ og án 2/4m breiðrar bermu

Tafla 15 S6: Ágjöf í [l/s/m]og [l/m] yfir mismunandi samsetningar af varnargörðum með núverandi krónuhæð, hækkun og međ eđa án 2 m og 4 m breiðrar bermu. Gildi sem eru lituð rauđ̃ uppfylla ekki kröfur um takmörk ágjafar međ viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar. Pær hæðir sem eru með bláan bakgrunn eru krónuhæð̌ir stöðva á bessu áhrifasvæði.

Ágjöf [l/s/m]										
Endurk. tími	Án Bermu				Me才 2m bermu			Með 4m bermu		
	+5.2m	+5.3m	+5.6m	+5.8m	+5.2m	+5.3m	+5.6m	+5.2m	+5.3m	+5.6m
1	0.17	0.03	0.009	0.005	0.026	0.003	0.001	0	0	0
10	3	0.76	0.3	0.19	0.92	0.18	0.059	0.093	0.011	0.003
100	16	4.9	2.2	1.4	8	2.2	0.86	2	0.37	0.12

Ágjöf einnar öldu [l/m]										
Endurk. tími	Án Bermu				Með 2m bermu			Með 4m bermu		
	+5.2m	+5.3m	+5.6m	+5.8m	+5.2m	+5.3m	+5.6m	+5.2m	+5.3m	+5.6m
1	188	6.6	0	0	27	0.46	0	0.38	0.001	0
10	1271	579	306	206	432	146	61	45	9.2	2.7
100	3616	1945	1260	1003	2135	983	545	564	179	80

Af peim stöðvum sem eru á áhrifasvæði punktsins S 6 er pað stöð 1800 með krónuhæð í +5.2 m sem kemur einna verst út í mati á ágjöf par sem ágjöf er um eđa yfir pá pröskulda um hámarkságjöf sem eru í gildi. Pá er ágjöf við stöð 1700 međ krónuhæð í +5.3 m er ýmist um eđa undir pröskuldum um hámarkságjöf. Pað er áhugavert að sjá hvað smávægileg hækkun á sjóvörninni getur haft mikil áhrif á ágjöf, auk pess að berma getur minnkar ágjöfina til muna.

Međ hækkun sjávar má búast við pví að ástandið á pessu svæði mun fara versnandi, par sem atburðir við stöð 1700 (í hæð +5.3 m) sem voru langt frá pví að ná upp í pröskulda um hámarkságjöf eru komnir yfir pær takmarkanir eftir 30 ár og langt umfram pað sem telst ásættanlegt í lok aldarinnar.

Tafla 16 S6: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, međ og án hækkun og/eđ̃ bermu.

Ágjöf eftir 24 cm hækkun sjávar [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]										
Endurk. tími	Án Bermu				Med 2m bermu			Med 4m bermu		
	+5.2m	+5.3m	+5.6m	+5.8m	+5.2m	+5.3m	+5.6m	+5.2m	+5.3m	+5.6m
1	0.68	0.12	0.038	0.021	0.13	0.017	0.004	0.004	0	0
10	8.7	2.3	0.92	0.57	3.3	0.67	0.23	0.48	0.061	0.015
100	37	12	5.8	3.9	22	6.1	2.6	6.9	1.4	0.47

Ágjöf eftir 54cm hækkun sjávar [l/s/m]										
Endurk. tími	Án Bermu				Med 2m bermu			Med 4m bermu		
	+5.2m	+5.5m	+5.6m	+5.8m	+5.2m	+5.5m	+5.6m	+5.2m	+5.5m	+5.6m
1	3.5	0.38	0.22	0.12	0.98	0.067	0.034	0.055	0.001	0.001
10	31	5.6	3.6	2.3	15	2	1.1	3.5	0.24	0.12
100	107	26	18	12	73	14	9.6	32	4.1	2.5

6.7 Ágjöf hjá reiknipunkti S7

Endurkomutími ágjafar (S7)

Mynd 27 Endurkomutími ágjafar sjóvarnar međ núverandi krónuhæð og hærri krónuhæð, með og án 2/4m breiðrar bermu

Mynd 28 Endurkomutími mestu ágjafar einnar öldu yfir sjóvarnir međ̃ núverandi og hærri krónuhæð, međ og án 2/4m breiðrar bermu

Tafla 17 S7: Ágjöf í [l/s/m]og [l/m] yfir mismunandi samsetningar af varnargörðum međ̃ núverandi krónuhæð, hækkun og með eða án 2 m og 4 m breiðrar bermu. Gildi sem eru lituð raữ uppfylla ekki kröfur um takmörk ágjafar með viðeigandi endurkomutíma, gul gildi eru á mörkunum og græn uppfylla kröfurnar um takmörk ágjafar.

Ágjöf [l/s/m]											
Endurk. tími	Án Bermu					Med 2m bermu			Med 4m bermu		
	+4.8m	+5.2m	+5.8m	+7.2m	+9.3m	+4.8m	+5.2m	+5.8m	+4.8m	+5.2m	+5.8m
1	1.9	0.2	0.006	0	0	0.49	0.035	0.001	0.024	0.001	0
10	19	3.4	0.21	0	0	8.9	1.2	0.048	1.8	0.14	0.002
100	73	17	1.7	0.004	0	48	9.9	0.74	20	2.7	0.1

Ágjöf einnar öldu [l/m]											
Endurk. timi	Án Bermu					Med 2m bermu			Med 4m bermu		
	+4.8m	+5.2m	+5.8m	+7.2m	+9.3m	+4.8m	+5.2m	+5.8m	+4.8m	+5.2m	+5.8m
1	901	217	0	0	0	249	36	0	13	0.66	0
10	3434	1417	236	0	0	1825	539	50	406	65	2.3
100	7755	4065	1146	0	0	6030	2521	508	2752	713	76

Af peim stöðvum sem eru á áhrifasvæði punktsins S7 er pað stöð 1900 með krónuhæð í +4.8 m sem kemur einna verst út í mati á ágjöf par sem ágjöf er alla jafna vel yfir bá bröskulda um hámarkságjöf sem eru í gildi. Til samanburðar eru niðurstöður útreikninga á ágjöf yfir bá stöð ef krónuhæð væri í +5.2 m , p.e.a.s. 40 cm hækkun. Pó slík hækkun minnki magn ágjafar verulega pá er hún enn pá hærri en takmörk um hámarkságjöf gefa til kynna. Pað er ekki fyrr en búið er að bæta 2 m bermu við hækkaða sjóvörnina sem magn ágjafar fer að nálgast ásættanlegt ástand.

Með hækkun sjávar má búast við pví að ástandið við stöð 1900 fari versnandi en hinar stöðvarnar virðast ná að halda aftur af ágangi sjávar. Í pað minnsta allt til aldamóta pegar ágjöf yfir stöð 2000 međ krónuhæð í +5.8 m fer að ná yfir pröskulda um hámarkságjöf.

Tafla 18 S7: Niðurstöður ágjafareikninga eftir 24 cm og 54 cm hækkun sjávar, með og án hækkun og/eđ̃ bermu.

Ágjöf eftir 24 cm hækkun sjávar [$\mathrm{l} / \mathrm{s} / \mathrm{m}$]											
Endurk. tími	Án Bermu					Med 2m bermu			Med 4m bermu		
	+4.8m	+5.2m	+5.8m	+7.2m	+9.3m	+4.8m	+5.2m	+5.8m	+4.8m	+5.2m	+5.8m
1	6.7	0.78	0.025	0	0	2.3	0.17	0.003	0.19	0.006	0
10	50	9.5	0.65	0.001	0	28	4	0.18	8.2	0.66	0.012
100	161	42	4.4	0.013	0	120	26	2.2	62	9	0.4

Ágjöf eftir 54 cm hækkun sjávar [$/ \mathbf{s} / \mathrm{m}$]											
Endurk. tími	Án Bermu					Med 2m bermu			Med 4m bermu		
	+4.8m	+5.2m	+5.8m	+7.2m	+9.3m	+4.8m	+5.2m	+5.8m	+4.8m	+5.2m	+5.8m
1	30	3.9	0.14	0	0	14	1.2	0.023	2.3	0.08	0
10	159	33	2.6	0.003	0	110	18	0.86	49	4.4	0.092
100	412	116	14	0.046	0	354	83	7.6	240	38	2

6.8 Niðurstöður ágjafarreikninga við Sæbraut

Tafla 19 sýnir samantekt á niðurstöðum kaflanna hér að ofan fyrir nauđsynlega hæð sjóvarnar á áhrifasvæðum reiknipunkta S1 til S7 byggt á niðurstöðum ágjafareikninga. Ágjöfin fer yfir viðmiðunarmörk við punkt S3, stöðvar 700 til 900 og við punkta S 6 og S7, stöðvar 1800 og 1900. Ágjöfin er mjög nálægt viðmiđunarmörkum eđa rétt skríður yfir pau við punkt S1, stöð 100.

Lagðar eru fram prjár tillögur fyrir hverja stöð par sem pörf er á hækkun, p.e. nauðsynleg hæð sjóvarnar án bermu, með 2 m breiðri bermu og með 4 m breiðri bermu. Mat á nauđsynlegri hæð byggir á peim viðmiðunarmörk fyrir hámarkságjöf sem valið var að miða við, sbr. kafla 5.1. Á mynd 29 má sjá við hvaða reiknipunkt ágjöf fór yfir viðmiðunarmörkin.

Tafla 19 Nauð̌synleg hæð sjóvarnar í stöðvum bar sem ágjöf fer yfir viðmiðunarmörk á áhrifasvæðum reiknipunkta S1 til S7 byggt á jöfnu fyrir ágjöf fyrir sjóvörn án bermu og međ 2 og 4 m breiðri bermu.

\left.| | Nauðsynleg hæð sjóvarnar (m) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Áhrifasvæði | S1 | S3 | | | | S6 |$\right]$ S7

Mynd 29 Yfirlitsmynd yfir sjóvörnina við Sæbraut, stað̃setningu stöðva og reiknipunkta á grunnslód. Reiknipunktar bar sem ágjöf fer yfir viðmiðunarmörk eru sýndir rauðir, S3, S6 og S7 og gulir par sem ágjöfin er við eða rétt skríður yfir viðmiðunarmörk, S1.

Á mynd 30 má sjá hæðarlínu núverandi sjóvarnar, par sem búið er að merkja inná međ rauðum hvar ágjöf nær yfir mörk um ásættanlega hámarkságjöf og pörf er á ađgerðum og gulu par sem ágjöfin rétt skríður yfir mörk. Pá er einnig búið að merkja inná línuritið pá nauðsynlegu hækkun sem parf til að ná hámarkságjöf niður fyrir valin viðmiðunarmörk sem eru notaðir til að meta sjóvörnina. Hækkunin er tvípætt, annars vegar nauðsynleg hækkun án bermu, par sem pversnið varnargarðsins helst svo til óbreytt fyrir utan pær breytingar sem purfa til að hækka krónuhæð upp að ákveđinni hæð. Hins vegar er um að ræða nauðsynlega hækkun međ bermu, bá er gert ráð fyrir ađ 2 m bermu sé bætt við utan á sjóvörnina og er nauđsynleg hæð pví lægri en ef bermu er sleppt. Í flestum tilfellum parf ekki að hækka sjóvörnina ef notuð er 4 m berma og pví er pað tilfelli ekki tekið fram á myndinni.

Mynd 30 Krónuhæð núverandi sjóvarnar par sem merkt er inn hvar ágjöf fer yfir mörk. Hæð göngustígs er merkt međ brotalínu og tillögur ađ̃ minnstu hækkun sjóvarnar sem uppfyllir viðmiðunarmörk er merkt með appelsínugulum og grænum.

7 Pekkt aftakaveður

Við upphaf athugunar var óskað eftir upplýsingum um eftirminnilega ágjafaatburði við Sæbrautina undanfarna áratugi. Tveir atburðir stóðu upp úr hvað varðar ágjöf par sem til voru myndskeið af ágangi sjávar á land við Sæbrautina, beir voru 2. nóvember 2012, og 10.-11. desember 2019.

Eftir athugun á peim myndböndum sem til eru bendir allt til pess að vissara sé að styrkja sjóvarnir við landsvæði Sæbrautar meira en ágjafareikningar og gefin viðmiðunarmörk segja til um.

Mynd 31 Sjór gengur yfir sjóvörn við Sæbraut í norðanáhlaupi pann 2.11.2012. Myndir teknar úr myndbandi (https:/ /www.youtube.com/watch?v=RkLbk-8D5ug)

7.1.1 Aftakaveður 2. nóvember 2012

Pann 2. Nóvember 2012 gekk yfir lægð með sterkri norðanátt par sem vindhraði náði allt að 23 m /s með tæplega 40 m /s í kviðum. Pað gerði ólgusjó og hann gekk á land við Sæbrautina með peim tilheyrandi ógn fyrir umferð og gangandi vegfarendur. Á mynd 31, sem eru skjáskot úr myndbandi tekiđ af Kristni Jóni Eysteinssyni, má sjá hvernig vindurinn feykir öldu yfir sjóvörnina og á ökutæki á Sæbrautinni, vestan við gatnamótin við Snorrabraut. Myndbandið var tekið upp fyrri part dags pegar bað tók að birta til. Pá er ágangur sjávar að lægja par sem sjórinn er tekinn að fjara út, en flóð átti sér stað kl 08:02 að morgni og náði mest +2,3 m í hæðarkerfi Reykjavíkur (+4,1 m í hæðarkerfi Faxaflóahafna). Annað myndband tekið af Erni Marinó Arnarsyni (https:/ /www.youtube.com/watch?v=aG3J6PH5S2s\&t=9s) var tekið nálægt hádegi af 4. Hæð

Mynd 32 Mat á međalágjöf (hægri) og mestu ágjöf stakrar öldu (vinstri) yfir varnargarðana við Sæbraut dagana 1.-3. nóvember 2012. Atburðurinn nær hámarki í morgunflóðinu kl 07:00, síðan fellur ágjöfin niður pegar pað̃ tekur að fjara út.
við Skúlagötu 30. Hann útilokar ekki að aðstæður hefðu verið verri pegar hann kom til vinnu um morguninn, allt fullt af grjóti og sjór gekk yfir bílinn.

Við mat á ágjöf yfir sjóvörn á bessum degi reynist atburðurinn ná hámarki um kl 08:00 að morgni 2. nóv. líkt og sjá má á mynd 32. Pá er mesta meðalágjöfin rétt rúmir $2 \mathrm{l} / \mathrm{s} / \mathrm{m}$ og mesta ágjöf stakrar öldu er allt að $655 \mathrm{l} / \mathrm{m}$. Pessar niðurstöður eru fengnar með peim aðferðum sem fjallað er um í kafla 5.2 auk pess að taka tillit til áhrifa vinds á ölduna. Samkvæmt ágjafaleiðavísinum EurOtop 2018 pá gildir í hvassviðri sem pessu að raunveruleg ágjöf geti verið allt að fjórfalt meiri en sú sem reiknilegar aðferðir segja til um.

7.1.2 Aftakaveður 10.-11. desember 2019

Dagana 10.-11. desember 2019 gekk djúp lægð yfir allt landið par sem mældur loftprýstingur við gömlu höfnina í Reykjavík fór niður í allt að 965 hpa. Sterk norð-norðvestan átt knúđi krappar vindöldur, en mældur vindur náði yfir $20 \mathrm{~m} / \mathrm{s}$ međ allt að $33 \mathrm{~m} / \mathrm{s}$ í kviðum. Á pessum dögum var ekki stórstreymt, en sjávarhæð náði mest í +2,37 m í hæðakerfi Reykjavíkur í kvöldflóðinu 10. desember kl. 17:30 og +2,15 m í morgunflóðinu 11. desember kl. 05:45. Hvassviðrið varði í rúman sólahring par sem vindur mældist yfir $15 \mathrm{~m} / \mathrm{s}$ í rúma 20 klukkutíma. Landsvæđi við sjóvarnir víðsvegar um Reykjavík báru ummerki um ágang sjávar eftir að lægðin gekk yfir. Hreinsa purfti mikið magn af grjóti, para og tilheyrandi bæði af göngustígum sem og umferðargötum sem liggja meðfram sjóvörnum borgarinnar, par á međal voru fjölförnu göturnar Sæbraut og Eiðsgrandi.

Við mat á ágjöf yfir pessa daga greinast tveir toppar par sem ágjöf nær yfir mörk fyrir atburði með 10 ára endurkomutíma. Ágjöf yfir sjóvörnina við Sæbraut náði hámarki í kvöldflóðinu 10. des og svo náðist annar toppur í morgunflóðinu pann 11.des. Fyrri daginn var mesta ágjöf tæpir $2 \mathrm{l} / \mathrm{s} / \mathrm{m}$ og rúmir $800 \mathrm{l} / \mathrm{m}$ en seinni daginn náði ágjöfin mest um $2,2 \mathrm{l} / \mathrm{s} / \mathrm{m}$ og tæp $800 \mathrm{l} / \mathrm{m}$. Við mat á ágjöf er tekið tillit til peirra áhrifa sem hvassviðri spilar í magn ágjafar en við slíkar aðstæður getur ágjöf verið allt að fjórfalt meiri en hún væri ef ekki væri svo vindasamt.

Mynd 33 Mat á međ̃áágjöf (hægri) og mestu ágjöf stakrar öldu (vinstri) yfir varnargarðana við Sæbraut dagana 9.-11. desember 2019. Atburðurinn nær hámarki annarsvegar í kvöldflóðinu pann 10. des og morgunflóðinu pann 11. des.

8 Samantekt

Í skýrslu bessari er fjallað um ágjöf yfir sjóvarnir á landsvæði Reykjavíkur við Sæbraut. Tilgangurinn er að meta nauðsynlega hækkun sjóvarna eđa pykkingu grjótkápu með bermu pannig að kröfur um ágjöf yfir pær séu uppfylltar.

Sem möguleg hækkun og breyting á sjóvörnum við Sæbraut er bæði skoðaður hefðbundinn tveggja grjótlaga sjóvarnargarður og garður með pykkari grjótvörn, par sem grjótbermu hefur verið bætt framan á sjóvörnina. Hefðbundinn sjóvarnargarður er byggður úr tveimur lögum af brimvarnargrjóti auk síulaga par undir.

Ágjafarreikningar hafa verið gerðir fyrir um 20 stöðvar með 100 m millibili sem skiptast niður á 7 áhrifasvæði á hafsvæðinu við Sæbraut sem miðast við reiknipunkta S1 til S7 fyrir öldu á grunnslóð. Ágjafareikningar leiða í ljós að á tveim köflum sjóvarnarinnar reynist ágjöf hærri en valin viðmiðunarmörk um ágjöf, p.e við stöðvar 700 til 900 og stöðvar 1800 til 1900. Auk pessa rétt skríður ágjöfin yfir viðmiðunarmörk stöð 100.

Peir kaflar sjóvarnarinnar par sem ágjöf nær yfir mörk eru jafnframt peir hluta sjóvarnarinnar sem liggja hvað lægst í landi, p.e. um 400 m kafli par sem Snorrabraut og Sæbraut mætast og svo um 200-300 m kafli par sem Kringlumýrabraut og Sæbraut mætast. Niđurstöður ágjafareikninga gefa til kynna að hækka purfi sjóvörnina við Sæbraut á pessum tveim köflum um minnst 0,2-0,6 m svo fyrirfram gefnar kröfur um ágjöf verði uppfylltar ef sjóvörnin heldur sínu hefðbundna tveggja grjótlaga formi. Án pykkingar eða bermu byrfti að hækka sjóvörnina í +5,0 m í stöđvum 700 til 900, í +5,4 mí stöđvum 1800 til 1900 og í +4,7 mí stöð 100.

Međ pví að pykkja grjótvörnina međ 2 til 4 m breiðri grjótbermu má hins vegar uppfylla kröfurnar međ minni eđa engri hækkun samkvæmt reiknuđum niðurstöðum. Með 2 m breiðri bermu pyrfti hæð sjóvarnar að vera +4,8 m í stöðvum 700 til 900, +5,3 m í stöðvum 1800 til 1900. Međ 4 m breiðri bermu parf litla sem enga hækkun, eđa aðeins í stöð 1900 par sem hæðin pyrfti að vera +5,2 m.

Við skoðun á myndböndum af flóðaatburðum við Sæbraut er pað mat skýrsluhöfunda að pessir reikningar séu vanmat á aðstæðum og ađ pað purfi ađ hækka sjóvörnina meira en útreikningar og valin viðmið̛unarmörk fyrir ágjöf gefa til kynna. Pví er lagt til ađ̃ í stöðvum 700 til 900 verði sjóvörnin annað hvort hækkuđ í $+5,4 \mathrm{~m}$ án bermu eđa í +5,0 m međ 3 til 4 m breiðri bermu. Jafnframt að í stöðvum 1800 til 1900 verði sjóvörnin annað hvort hækkuð i +5,6 m án bermu eđa $+5,4 \mathrm{~m}$ međ 2 til 3 m breiðri bermu. İ stöð 100 nægði ađ hækka sjóvörnina í +5,0 mán bermu eđ̃ í $+4,7 \mathrm{~m}$ međ 2 til 3 m breiðri bermu.

Við skoðun á framkvæmdakostnaði er rétt að benda á að hér eru niðurstöður túlkaðar miðað við 100 m milli sniða. Pví parf að bæta við um 50 m til sitt hvorrar handar til að fá lengd viðgerðar, bó háð aðstæðum. Pannig er líklegt að lengd viðgerðar við stöðvar 700 til 900 verði um 300 m löng.

Niðurstöður ágjafarreikninga á hærri sjávarstöðu, par sem stuðst er við spár um hækkun sjávarstöðu vegna hnattrænnar hlýnunar annars vegar eftir 30 ár og við lok aldarinnar hins vegar, sýna að töluverðar líkur séu á að hönnunarkröfur sjóvarnarinnar eftir ofangreindar breytingar verði enn uppfylltar eftir 30 ár og mögulega lengur. Par sem eðlilegur líftími sjóvarnarmannvirkja er um 30 til 40 ár pá gefst færi á að endurskoða forsendur og hönnun að peim tíma liðnum.

9 Heimildir

1. Ólafur Guðmundsson og Páll Einarsson, 1991. Úrvinnsla sjávarfallagagn: Sjávarföll og hægfara sjávarborðsbreytingar í Reykjavíkurhöf. Jarð̃vísindastofnun Háskólans
2. Halldór Björnsson, Bjarni D. Sigurðsson, Brynhildur Davíđsdóttir, Jón Ólafsson, Ólafur S. Ástpórsson, Snjólaug Ólafsdóttir, Trausti Baldursson, Trausti Jónsson, 2018. Loftslagsbreytingar og áhrif peirra á İslandi - Skýrsla vísindanefndar um loftslagsbreytingar 2018. Veðurstofa Íslands.
3. Kamphuis (2000). „Introduction to coastal engineering and management: 2nd edition". World Scientific.
4. B. Gouldby, D. Wyncoll, M. Panzeri, M. Franklin, T. Hunt, D. Hames, N. Tozer, P. Hawkes, U. Dornbusch, og T. Pullen, 2017. „Multivariate extreme value modelling of sea conditions around the coast of england". Proceedings of the Institution of civil engineers, Maritime engineering, 170 tbl., bls. 3-20
5. Bryndís Tryggvadóttir, 2020. Mat á aftaka sjávarflóđum: Innleiðing aðferða sem byggist á samlíkum útgilda. Lokaverkefni í MSc námi viđ Umhverfisverkfræði hjá Háskóla Íslands. Reykjavik.
6. EurOtop, 2018. Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. Van der Meer, J.W., Allsop, N.W.H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Troch, P. and Zanuttigh, B., www.overtopping-manual.com.
7. Neural Network, http:/ / overtopping.ing.unibo.it/overtopping
8. Van der Meer, J.W og Sigurður Sigurðarson, 2016. Design and construction of berm breakwaters. World Scientific. Advanced Series on Ocean Engineering Vol40 ISBN 978-981-4749-60-2, http:/ /icebreak.is/.
