

Using recycled construction wastes as wetland substrates for pollutant removal in cold climate

Selina Hube, Tarek Zaqout, Hrund Ólöf Andradóttir, Bing Wu

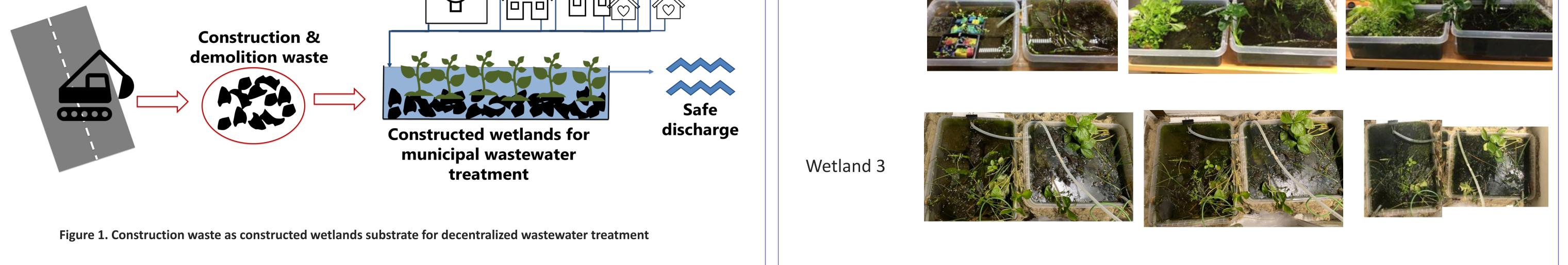
FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING

Background

- Cheap and easy-to-operate nature-based decentralized wastewater treatment process through biodegradation, sorption, plant uptake, photodegradation.
- The substrate material provides binding sites for biofilm development and Ο support for aquatic plants. Generally, natural materials (such as gravels) are used, this study proposes recycling construction and demolition waste as substrate material.

Materials and methods

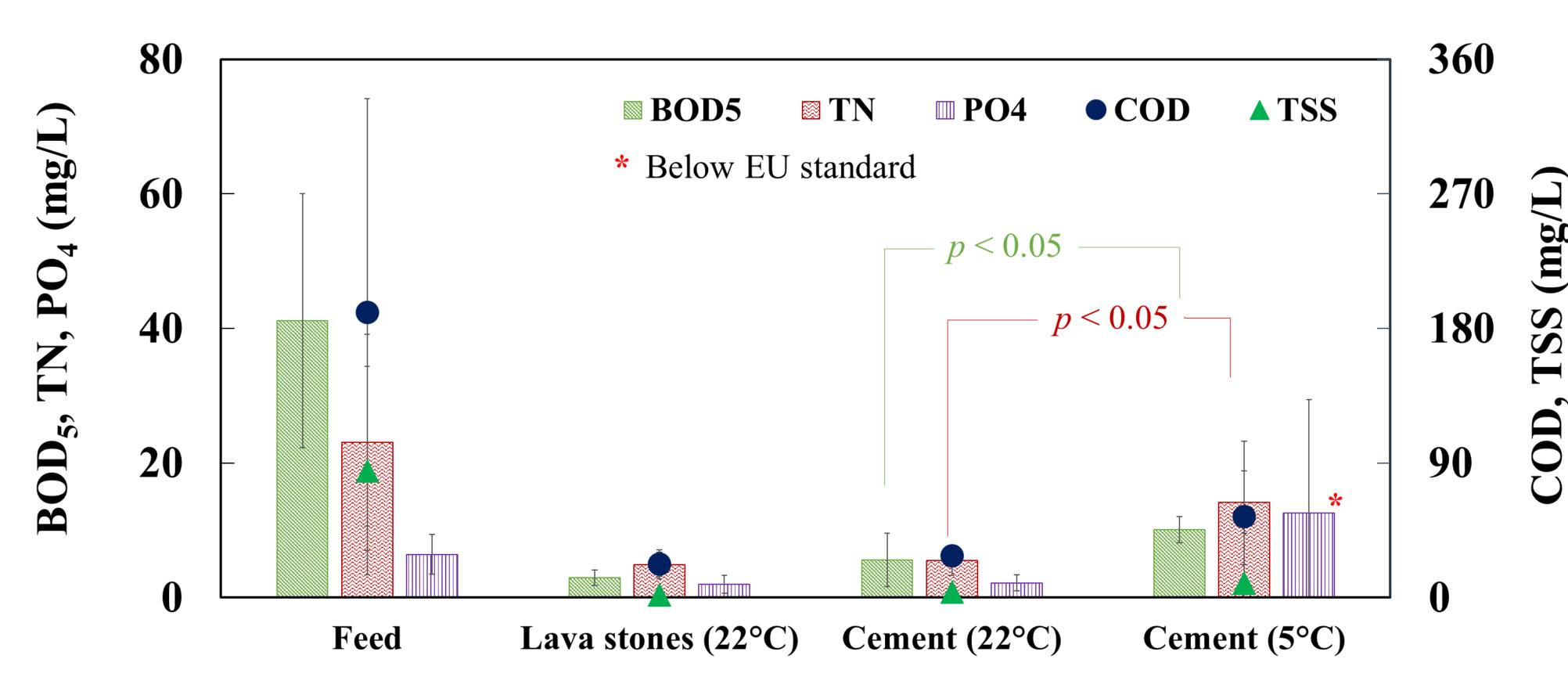
Three lab-scale 2-stage constructed wetlands (~14 L) were operated Ο with a hydraulic retention time of ~50 h, for treating primary wastewater collected at the municipal wastewater treatment plant in Klettagarður, Reykjavík.


Time	Substrate (25% packing density)	Temp/Light	Plants
Wetland 1 (Day 0-60)	Lava stone	22°C (12 h on-12 h off)	Stage I: Menyanthes trifoliata; Icelandic moss Stage II: Java Mosi
Wetland 2 (Day 0-60)	Cement blocks		(Vesicularia dubyana), Ceratophyllum demersum, Java Fern (Ceratophyllum demersum), basil (Ocimum basilicum), lettuce (Lactuca sativa)
Wetland 3 (Day 61-120)	Cement blocks	5°C (12 h on-12 h off)	Stage I and II: Menyanthes trifoliata; Icelandic moss
	Day 11	Day 30	Day 42

- The use of low-cost recycled aggregates in wetlands would benefit for saving 0 natural geological resources, reducing the adverse effects of waste disposal, minimizing carbon footprint of construction materials, and enhancing nutrient removal due to improved adsorption efficiency.

Research questions

- Is using recycled construction and demolition waste as wetland substrate technically, economically, and environmentally feasible in Iceland?
- How well can recycled aggregate-based constructed wetlands remove pollutants in cold climate?
- What design and operation parameters are associated with pollutant removals in the recycled aggregates-based constructed wetlands in cold climate?


Wetland 1 & 2

Results and Discussion

- Cement waste material as biocarriers achieved similar pollutant removal effectiveness as lava stones: 85-88% of COD removal; 80-90% of BOD₅ removal; 67-70% of TN removal; 58-63% of PO₄ removal; 94-98% of TSS removal at warm temperature.
- The wetland at cold temperature produced the effluent with significantly higher BOD₅ and TN concentrations than that at a warm temperature, possibly due to limited plant sorption and biodegradation.
- The treated water met European discharge standards, except the treated water at cold

Figure 2. Pollutant removal in constructed wetlands with different substrates

Future work

- Heavy metal removal and plant uptake in the wetlands will be investigated.
- Effects of plant types on wastewater treatment efficiencies in the wetlands will be Ο examined.
- Economic and life cycle assessment for comparison with alternative decentralized Ο wastewater treatment processes will be performed.

fulfill didn't nutrient temperature the standard for sensitive areas.

Acknowledgements

University of Iceland Doctoral Grant and Vegagerðin for providing funding; Olivia Gry Groth Hede and Sille Pryds Hansen for data curation; Vilhjálmur Ívar Sigurjónsson for helping with the experimental setup; Veitur for providing wastewater.

October 2022