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Höfundar skýrslunnar bera ábyrgð á innihaldi hennar. Niðurstöður hennar ber ekki að túlka sem 
yfirlýsta stefnu Vegagerðarinnar eða álit þeirra stofnana eða fyrirtækja sem höfundar starfa hjá. 
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1 Introduction 
The Icelandic Meteorological office (IMO) monitors natural hazards (water, earth, and atmosphere) 
to assess and communicate possible risks. With our warming climate, glaciers are receding, 
permafrost is melting, ground is frozen for shorter periods during the wintertime and the rainfall 
season extends into the winter. As mountain slopes adjust to the changing conditions, the potential 
for landslides increases. 

Landslides are one of the most hazardous natural processes in mountainous regions. They put at 
risk roads, urban areas, and other infrastructure (Arattano and Marchi, 2008). Comprehensive 
monitoring of these hazards can help prevent fatalities and mitigate socio-economic costs, including 
material damage and economic disruption. This realization has led to the development and setup of 
natural hazard monitoring systems (Arattano and Marchi, 2008; Baum and Godt, 2010; Hürlimann 
et al., 2019; Stähli et al., 2015), going from event warning systems that focus on ongoing events to 
early warning or forecasting systems providing more advance warning time to allow for planning 
and mitigation. 

These systems rely on near-real-time measurements and observations, traditionally ground-based 
but also more recently Earth observations from satellites and predicted values from numerical 
models. While most landslide monitoring systems were originally based on rainfall thresholds 
(Tiranti and Rabuffetti, 2010), Zhuo et al. (2009) showed a clear correlation between soil wetness 
conditions and landslides, such as it could be used in an early warning system in combination with 
surface elevation data. Other studies demonstrate the importance of soil moisture in improving the 
definition of thresholds and reducing the number of false alarms (Bittelli et al., 2012; Bordoni et 
al., 2015; Brokka et al., 2016; Leonarduzzi et al., 2017; Hürlimann et al., 2019; Marino et al., 2020; 
Thomas, Collins and Mirus, 2019, Wicki et al. 2020).  

As computer processing improves and remote sensing images become more freely available, these 
fast-developing resources are being increasingly utilized. Yet currently, satellite imaging is used 
typically in the aftermath of landslides to delineate inundation extent using images in the visible 
infrared spectrum (Cheng, Wei and Chang, 2004; Mondini et al., 2011; Nichol and Wong, 2005). 
Therefore, this approach is dependent on daylight and cloud-free conditions to evaluate the change 
of slope conditions (Dabiri et al., 2020; Larkin et al., 2020). During the last decade, new 
methodologies have been developed and tested using soil moisture estimates from satellite radar 
images (Brokka et al., 2016; Marino et al., 2020) to complement or replace ground-measurements 
that are often sparse both in time and space and/or difficult to perform, and support landslides 
monitoring systems. Downscaling methods can be used to compensate for the coarseness of the soil 
moisture radar data (Kim et al., 2018; Peng et al., 2017). 

Soil moisture measurements are scarce in Iceland. To date, there have been occasional studies of 
soil moisture for agricultural purposes (Landbúnaðarháskólinn, unpublished). The Icelandic Road 
and Coastal Administration (IRCA) measures soil moisture in roads, but these measurements do 
not represent natural conditions. Since December 2018, IMO has been running a soil moisture 
measuring station close to Reykjavík with the goal of detecting precipitation on frozen ground in 
relation to possible contamination of potable water from groundwater aquifers (Guðrún Nína 
Petersen, 2018). In November 2021, a soil moisture measuring station was established in 
Seyðisfjörður as a part of several techniques to monitor the hillside after a series of major landslides 
in December 2020. Large debris flows hit the town of Seyðisfjörður, resulting in the evacuation of 
inhabitants and considerable damage to property and infrastructure. The economic activity of the 
town was put to a complete stop for several days. 

https://link.springer.com/article/10.1007/s10346-020-01400-y#ref-CR39
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Studies in Iceland have shown that the main triggering factors of landslides are intense 
precipitation, thawing permafrost and seismic activity (Sæmundsson et al., 2003; Sæmundsson et 
al., 2018; Van Vliet-Lanoë and Guðmundsson, 2015). In recent years, recurring landslides have 
made the news: Móafellshyrna í Fljótum in 2012 (Sæmundsson et al., 2018), Árnesfjall á Ströndum 
in 2014, Fagraskógarfjall (Larke et al., 2020), Hleiðargarðsfjall in Eyjafjörður in October 2020, 
Neðri-Botnar in Seyðisfjörður in December 2020 and Útkinn in Þingeyjarsveit in October 2021. As 
the climate continues to warm, larger areas of permafrost will melt, thus creating conditions for 
landslides from high-elevation slopes. Likewise, global warming will result in more extreme and 
seasonally variable weather conditions, with intense rainfall being a primary trigger for landslides. 
Climate-change projections underline the need for comprehensive, advanced monitoring of 
landslide susceptibility. 

Economic and human losses associated with snow avalanches and landslides have been evaluated 
at 13 billion ISK between 1974 to 2000 by Jóhannesson and Arnalds (2001). Since 2000, urban 
areas have expanded significantly, infrastructure has continued to develop, and increased tourism 
is creating new economic activities and overall population growth in previously isolated areas. 
However, monitoring of avalanches and other mass movements relies largely on analysis of 
meteorological conditions, observations, and experience of the terrain by experts at IMO, assisted 
by local contacts for landslide observations (Jensen, 2004). Events in Seyðisfjörður in 2020 
changed IMO’s monitoring and assessment approaches, prompting the development of a local early 
warning system based on various ground- and space-based measurements and forecast data. This 
project is an experimental contribution to this new forecasting system. 

Aim 
This research explores new opportunities provided by satellite products for the development of an 
early warning systems for landslides. The concept will be tested on selected landslides from the 
East of Iceland to determine if the events could have been forewarned in relation to timing and 
location. 

The IMO and the IRCA have been working in close collaboration over the years to monitor hazards 
that can affect or damage road infrastructure in Iceland. This project aims at developing new tools 
that will ultimately improve the services of IMO to authorities such as IRCA. 

This research is intended to be the starting point of a larger project to develop an early warning 
system for various types of natural hazards, including landslides, flash floods, snow avalanches and 
ice jams. Such a system would help the Icelandic authorities to monitor, detect and mitigate 
hazardous events. In this study, we will specifically explore the use of the soil-moisture-content 
satellite products delivered by EUMETSAT for the support of an early warning system of landslides 
triggered by excess water and, in doing so, evaluate the feasibility of an operational early warning 
system supported by remote sensing data. 

The focus will be on three major questions: 

1. Can soil moisture content products from EUMETSAT be used to improve the definition of 
thresholds for landslide events in Iceland? 

2. Are the satellite products frequent enough to help with short to medium term advance warning 
prior to an event? 

3. If this methodology is successful at a local level, can it be translated and used operationally in 
an early warning system for Iceland? 
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2  Datasets and methodology 

Landslide observations 
The Icelandic landslide database operated by the Icelandic Institute of Natural History and IMO 
has over 7,000 registered landslides. Many of these landslides are historical landslides with the 
oldest dating back to settlement times. The inventory of landslides that was selected for this project 
were events that occurred between 2010 and 2021 on the Eastern coastline, more specifically 
between Borgarfjörður Eystri in the North and Berufjörður in the South (Table 1). The focus area 
was between Seyðisfjörður and Eskifjörður as these areas are more prone to landslides. The selected 
landslides for this study only date back to 2010 due to the temporal limit of the satellites, as most 
platforms began to acquire observations between 2010 and 2020. Only slope failures that include 
debris flows, debris slides, and earthflows were selected. Rockfalls were excluded from this 
research as they are much harder to predict. The size and spatial distribution of the landslides differ, 
although in this study they are treated as having the same size, that is hit or no hit. 

 

Table 1. Annual, cumulative number of landslides for nine locations between 2010 and 2020. 

 Abbreviated locations (for explanation, see main text)  

Year be bu es fk ne nf ry se sy total 

2010  1       1 2 

2011  1        1 

2013         2 2 

2014 1  2    3 1 6 13 

2015     1   7  8 

2016  5        5 

2017  1 1   1  4  7 

2018   1     1  2 

2019   2   4 2 1 1 10 

2020     12 2     2 17 4 37 

Total 1 8 18 2 1 5 7 31 14 87 

 

In Seyðisfjörður, many landslides have occurred over the years, and it is worth mentioning the 
major, damaging landslides that took place in December 2020. Following these events, a dense 
network of instruments was setup in Neðri-Botnar area, which is above the southern part of 
Seyðisfjörður. Amongst other measurements, a rainfall gauge was established at 170 m above sea 
level, and it is used to improve information about precipitation in the area.  

In-situ soil moisture measurements 
Aside from specific projects by the Agricultural University of Iceland (LBHÍ) for locations such as 
Möðrudalur (Ólafur Arnalds and Jón Guðmundsson, personal communication), few soil-moisture 
instruments have been operated in Iceland. The IRCA measures moisture in roads, but these 
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measurements do not represent natural soil conditions so there are not applicable to landslide 
assessments. Since 2019, IMO has operated a soil moisture meter in Heiðmörk. Also in November 
2021, a soil moisture meter and two thermometers were installed in Neðri-Botnar in Seyðisfjörður, 
close to the rainfall gauge that was installed in January of the same year. In summary only limited 
timeseries of soil moisture are available to this study. 

In-situ measurements for volumetric water content are compared to satellite measurements of 
surface moisture level. This is not straightforward since the meter is buried at 50 cm depth, but the 
satellite only senses moisture level in the first 0-5 cm of the topsoil. We see that it takes time for 
precipitation to reach deep into the soil and changes happen with more inertia than on the surface. 
The approximate lag or time difference between signal on the surface and at depth is identified by 
shifting the in-situ measurements forward in time until they match the surface moisture. Then it 
makes sense to look at the data together and determine if there is a correlation between the variables. 
This is done by going through the satellite dataset and finding the closest matching time stamp in 
the in-situ dataset while accounting for time lag and comparing the two variables. 

Precipitation measurements 
Precipitation measurements were used for comparison with in-situ soil moisture observations, 
comparison with operational satellite soil moisture observations received at IMO, for comparison 
with historical satellite soil moisture data, as well as to calculate the Antecedents Precipitation 
Index (API) and to demonstrate the operation of the current landslide detection system. 

Precipitation data from monitoring stations in the East Fjords and Hólmsheiði were used to analyse 
operational satellite data and in-situ soil moisture measurements. A precipitation station in the town 
of Seyðisfjörður, with an automatic precipitation monitoring has been in use since 1995. 
Measurements from the two collective stations are used in this study, forming a composite time-
series from 1995 to 2021. The recent precipitation station in Botnahlíð improves the data series 
even further. So far landslide events cannot be linked to in situ soil moisture data. The 
measurements from Seyðisfjörður only reach back to November 2021. A precipitation gauge at 
Hólmsheiði east of Reykjavík has useable time series from the year 2008. This site is used for 
comparison with soil moisture measurements in Heiðmörk. 

For the comparison with historical satellite data, precipitation data for the study area (green polygon 
in Figure 1) was taken from the automated and manual stations shown in Table 2. The data gives 
the total rainfall for 24-hour periods from 09:00 to 09:00 going back to 2015 for all stations except 
Teigarhorn, which started in 2018 and Bakkagerði which started in 2017. The average value from 
all stations was used for comparison with the soil moisture anomaly timeseries described in the next 
section. One station Hólmsheiði (no. 1481) is not within the study area, although it was used to 
analyse longer timeseries for API calculations. Note that the overlap between soil moisture 
measurements and nearby precipitation data in Heiðmörk only extends back to 2019. 

The index of moisture stored within a drainage basin before a storm has been called antecedents 
precipitation index (API). The API is a weighted summation of daily precipitation amounts, used 
as an index of soil moisture stored within a drainage basin before a storm. 
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Table 2. Meteorological stations used in this study. 

Station Name Latitude Longitude 

565 Svínafell 65.51348 -14.2 

616 Hánefsstaðir 65.28543 -13.87152 

620 Dalatangi 65.26817 -13.57593 

626 Neskaupstaður 65.14967 -13.6576 

666 Gilsá  64.8593 -14.23678 

675 Teigarhorn 64.67614 -14.34406 

1481 Hólmsheiði 64.1085 -21.6864 

4180 Seyðisfjörður 
Vestdalur 

65.28137 -14.00042 

4182 Seyðisfjörður 65.25487 -14.00645 

4193 Dalatangi 65.26815 -13.57497 

4380 Bakkagerði 65.52352 -13.816731 

5981 Eskifjörður 65.07633 -14.03695 

5982 Fáskrúðsfjörður 
Ljósaland 

64.93723 -14.0407 

5990 Neskaupstaður 65.15027 -13.66942 

 

Satellite data 
Overview 

Changes in the physical properties of soil and vegetation brought about by changes in soil moisture 
can be detected by satellite-borne instruments operating across the electromagnetic spectrum. When 
choosing the instruments with which to monitor soil moisture for landslide prediction at high 
latitudes several requirements need to be taken into consideration, principally: 

(1) Reliability under a range of illumination conditions, including low light levels and low 
illumination angles in winter, and preferably at night. 

(2) High enough spatial resolution to allow soil moisture variability to be monitored at a spatial 
scale useful for prediction. 

(3) High enough frequency to track changes on a timescale of individual weather systems and 
provide advance warnings of landslides. 

(4) A long and consistent data archive that can be used to establish empirical relationships 
between soil moisture and landslides. 

(5) Reliable even in conditions of total cloud cover. 

The latter requirement is particularly important in Iceland given the high number of cloudy days 
during the year, and the domain of application, as landslides tend to take place during or shortly 
after periods of heavy rainfall. This sets this application apart from other remote sensing studies of 
soil moisture that tend to focus on early detection of drought conditions (Ford and Quiring 2019). 
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Several different approaches have been developed for characterising soil moisture using visual to 
shortwave infrared (SWIR) wavelengths. In the SWIR, the presence of soil moisture leads to a 
decrease in reflectance (the “darkening effect” noted by Sun et al., 2021) and changes in plant 
phenology, such as drought conditions that can be detected by changes in the “red edge” spectral 
feature in the red-near infrared region (as typically tracked by the Normalised Difference 
Vegetation Index, or NDVI, e.g. Karnieli et al., 2010). Sensors operating at these wavelengths have 
high resolutions and short repeat times (although there is some trade-off between the two), however 
they are more suitable for bare soil conditions, or situations where the relationship between plant 
phenology and soil moisture is well established. They also cannot be used at night or, crucially, 
during cloudy conditions, so they were not considered further. Similarly, instruments at the thermal 
infrared wavelengths can pick up changes in thermal inertia and the amplitude and phase of the 
diurnal surface temperature cycle brought about by the impact of water’s high heat capacity and 
latent heat flux on the thermal balance of the soil (see Zhang and Zhou, 2016 for a review). These 
sensors do work at night, but they also tend to have a lower spatial resolution and are again affected 
by cloud cover, so they too were also not considered for this project.  

Having ruled out the visible, shortwave, and thermal infrared bands, we are left with microwave 
instruments. In the microwave region changes in soil moisture can result in substantial changes in 
the properties of the soil that govern its interaction of electromagnetic radiation. For instance, 
changes in moisture content can change the dielectric constant from around 80 to ~3–4, resulting 
in emissivity changing from ~0.95 to ~0.6 which will change thermal emission for a given 
temperature (Schmugge, 1980), as well as change the backscatter coefficient, which affects how 
the surface reflects incoming microwaves. Microwave sensors also have the advantage of operating 
at night, and through cloud and, therefore, they have been used to study soil moisture patterns at a 
global scale since the launch of the SMMR instrument on Nimbus 7 in 1978 (Owe et al., 2008), 
and operationally produced soil moisture products are produced in near real-time and made 
available by various satellite data providers.  

Microwave sensors 

Microwave instruments come in two types, passive instruments which measure the thermal 
emission from the Earth as a function of surface emissivity and temperature, and active instruments 
that emit microwaves and measure the energy returned from the surface, which is a function of the 
backscatter coefficient of the surface. The natural thermal emission from the Earth surface is very 
weak in the microwave, requiring integration over a large area for a reasonable signal to noise ratio, 
resulting in passive microwave sensors having the lowest spatial resolutions of all sensors under 
consideration, typically on the order of tens of kilometres. In contrast to passive sensors, active 
instruments emit radiation and measure the signal returned to the sensor from the surface. These 
sensors can be further sub divided into Synthetic Aperture Radars (SAR) and scatterometers. SAR 
sensors simulate a larger antenna by combining multiple observations of the same target along their 
orbit, resulting in a much higher spatial resolution, on the order of meters, while also measuring the 
phase of the returning signal for interferometry applications. However, they tend to have smaller 
swath widths and longer revisit times, hence not being employed for soil moisture studies to date. 
The other type of active sensor, scatterometers, are optimised for very precise measurements of 
backscatter to within a tenth of a decibel for measuring windspeeds over oceans, and therefore still 
need to integrate energy over a wide area, resulting in spatial resolutions like those of passive 
sensors on the order of tens of kilometres (Frison et al., 2016).  

The lower resolution passive radiometers and scatterometers have wide swath widths and therefore 
low revisit times typically on the order of one to three days. The main passive sensors currently in 
operation are the Soil Moisture and Ocean Salinity (SMOS) mission operated by ESA, with a ~43 
km resolution, maximum revisit time of ~3 days and an archive extending back to March 2016 and 
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Soil Moisture Active Passive (SMAP) with a 36 km resolution, a revisit time of ~1 day and an 
archive extending back to March 2015, while the Advanced Scatterometer (ASCAT) operated by 
ESA/EUMETSAT has a resolution of ~25 km, a repeat time of 1 to 2 days. Soil moisture is typically 
reported as either an arbitrary Soil Water Index (SWI), or as saturation percentage (from 0 to 100), 
which can be converted to a volumetric ratio in units of cm3/cm3, if soil porosity is known. These 
measures of soil moisture estimates are only valid for the upper 3–5 cm of soil. Some data products 
come with useful flags for standing water, frozen ground, and snow.  

In comparison the use of SAR sensors for soil moisture studies is still in its infancy, and few 
operational products are available. Some operational products such as the Disaggregated ASCAT 
soil moisture product use SAR data to enhance the resolution of low-resolution images, but this is 
using historical SAR data – the SAR images do not provide dynamic information about soil 
moisture changes, rather they are used for characterising static properties of the surface as expressed 
in the microwave and “downscaling” coarser resolution data appropriately. The SMAP mission was 
designed with both passive and active sensors to leverage the sensitivity of a passive microwave 
radiometer with the resolution of a SAR instrument, such that SAR data would be used to 
dynamically monitor soil moisture. Unfortunately, the SAR instrument failed early in the mission, 
and only conventional passive radiometer derived data products are produced operationally at the 
time of writing. Despite this setback, there has been renewed interest in SAR based soil moisture 
products in recent years, and a product based on the Sentinel 1 SAR instrument is now made 
available by the EU’s Copernicus project with a spatial resolution of ~100 m. This does not cover 
Iceland at the time of writing, although a global dataset is under development. The algorithm that 
retrieves the soil moisture from the Sentinel 1 images is comparatively simple (a basic time series 
analysis that assumes short term variations in backscatter are due to soil moisture variability rather 
than plant phenology) and a version of it could be implemented locally at IMO, but it was found to 
be sufficiently time consuming to be out of the scope of this project. Consequently, we discounted 
the use of SAR images for an operational system at IMO as it is presently too complex and costly, 
although we note that this may change in the future. 

After this process of elimination, we are left with soil moisture products from passive radiometers 
and scatterometers as our principal source of satellite data. The main disadvantages of these 
products are comparatively short archives, a poor spatial resolution, some gaps in the data of up to 
a few days, and soil moisture retrievals limited to the upper few centimetres. A few methods have 
been developed to work around these limitations: 

(1) Improve time series length and fill gaps with composite datasets: Composite datasets can 
be generated by integrating and standardising data from multiple sensors, resulting in much 
longer datasets – for instance the Copernicus Land Service Soil Moisture ECV dataset 
extends back to 1978 with one estimate a day. 

(2) Improve spatial resolution with downscaling / disaggregation, for instance Disaggregated 
soil moisture from ASCAT, downscaled using old ENVISAT SAR data, 1 km resolution, 
2010 to present. 

(3) Estimate soil moisture at depths greater than a few centimetres and fill in gaps using data 
assimilation. For instance, ECMWF land-surface data assimilation system integrates 
multiple sensors, models four different soil levels, extending the daily record back to 1992. 
NSIDC surface and root zone soil moisture, 9 km resolution, every three hours. 

These enhanced datasets, along with the raw soil moisture retrieval data based on the native 
capabilities of the sensors are available from several data providers. When choosing which dataset 
and data provider to use the principal consideration is frequency and timeliness – the data needs to 
be available ideally daily with lag on the order of hours for it to be useful for advance warning of 
landslide risk, which rules out some providers. For instance, the Copernicus Land Service Soil 
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Moisture ECV which is based on assimilation of satellite data, despite having favourable spatial 
and temporal resolutions, is updated on a ten-day cycle with a ten-day latency (for the ICDR 
product) and so is of no use for an operational forecasting system. At IMO most satellite data is 
received over EUMETCAST, the European Organisation for the Exploitation of Meteorological 
Satellites (EUMETSAT) direct broadcast system – satellite data is received by EUMETSAT, 
processed, encoded into a DVB signal, transmitted to a geostationary telecoms satellite, and then 
broadcast over Europe. The signal is received at IMO and decoded into different datasets, resulting 
in data being received and decoded at the institution with a minimal delay – for instance, the delay 
the time from image acquisition to a processed data product being made available to forecasters at 
IMO can be as a short as ten to fifteen minutes. The basic soil moisture data products available over 
EUMETCAST are ASCAT and SMOS products, with two enhanced ASCAT products available, 
one disaggregated using historical SAR data to 1 km resolution, and one assimilation product that 
provides daily soil moisture estimates for four soil horizons. These datasets are available in a timely 
manner with a minimal lag between acquisition and transmission over EUMETSAT. 

The selected satellite data products 

For the website demonstrating the use of the operational NRT data from EUMETSAT we chose to 
use the basic ASCAT soil moisture product. The surface soil moisture estimate is derived from the 
Advanced SCATterometer (ASCAT) instrument that is carried onboard Metop-B and Metop-C 
polar orbiting satellites. This product provides an estimate of the water content of the 0-5 cm topsoil 
layer, expressed in degree of saturation between 0 and 100 [%]. The algorithm used to derive this 
parameter is based on a linear relationship of surface moisture and scatterometer backscatter. The 
data is not affected by weather or day / night conditions and a full coverage for Iceland can be 
expected on average once per day with a minimum time delay. 

However, accessing historical data for modelling the relationship between soil moisture and 
landslides is difficult, because much of the data is archived by orbit, with limited subsetting 
capabilities. We are in contact with EUMETSAT to find a way to download long time series of data 
covering a small data without downloading prohibitively large volume of data, but for the time 
being we are forced to use more readily accessible archives for historical analyses. For this we 
turned to Google Earth Engine, which is a web service enabling the user to query hundreds of 
remote sensing and climatological datasets. Unfortunately, no EUMETCAST satellite based soil 
moisture products are available on Google Earth Engine, at the time of writing, however the NASA-
USDA Enhanced SMAP Global Soil Moisture Data, which is a product of assimilating SMAP data 
into a simple two layer model of the soil, is available, and is similar to the ASCAT Root Zone Soil 
moisture dataset available over EUMETCAST (albeit with a higher resolution), so we are confident 
the analysis here can be applied easily to archived EUMTCAST data once we have access to it. We 
used the Soil Surface Moisture Anomaly (SSMA) dataset, which is the anomaly in moisture in the 
upper soil level in the model compared to climatology from a 31-day moving average of the whole 
dataset. 

Despite being comparatively high resolution for a satellite-based soil moisture product at 10 km, 
the spatial resolution was still arguably too low for resolving spatial relationships between soil 
moisture and landslides, so we opted for a timeseries based approach. A timeseries of the SSMA 
was extracted from the entire dataset (which extends back to April 2015), by digitising a region 
encompassing all known landslides in the study area, and then finding the average value within that 
shape for each day (Figure 1). Missing days in the resulting timeseries were linearly interpolated. 
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Figure 1. The study area. (A) Example NASA-USDA Enhanced SMAP Global Soil Moisture 
Data Soil Surface Moisture Anomaly (SSMA) image. Note the coarse 10-km resolution and 
clipping of the dataset. Landslide locations are shown as dots. (B) The study area outlined 
in green over which SSMA was averaged. 

 

3 Results 
IMO operates multiple processing chains and branches for satellite data retrieval and processing. 
An additional branch was set up with operational purpose in mind for this project, and now the 
latest ASCAT soil moisture data products are used internally at IMO. The system takes the 25 km 
soil moisture product that is received by direct broadcast from EUMETCAST, decodes it, and stores 
it in a MapServer database, which is served as Web Map Service (WMS) to internal system, 
forecasters and other users and displayed in a leaflet map on a webpage (Figure 2). Processing is 
handled by Satpy, an open-source Python library that is used to decode, reproject, and create RGB 
composites from various satellite sensor data. ASCAT data was not originally supported by the 
library, but some effort was put into writing extensions that was then contributed to the Satpy 
project to make it more accessible to us and others to work with soil moisture data. 
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Figure 2. Example ASCAT Soil Moisture product with a resolution of 25 km, received at IMO 
via EUMETCAST and displayed on an internally accessible website using leaflet and 
MapServer. 

 

To test the validity of the MetOp ASCAT satellite data, measurements from stationary sampling 
station were compared to satellite data. In this experiment, the station at Heiðmörk was chosen and 
for each satellite overpass that contained valid data for the location of the station, a datapoint was 
added to a timeseries and stored. This timeseries was then compared to measurement timeseries 
from the station to verify correlation between the in-situ measurements and the satellite data. The 
main downside to this method is that we must deal with live data since historic data was not easily 
available and retrieval is out of the scope of this project. This means that the comparative data is 
limited to a little more than few weeks. Future research should include more data that also goes 
back in time. Another limitation is that the fundamental difference in the data that is being 
compared, while the satellite data represents the moisture percentage in the 3–5 cm of the top layer, 
the in-situ data is measuring water content for a meter that is buried 50 cm into the soil. Despite 
these complications this will still give valuable insight into correlation of measurements and 
satellite data.  

When plotted together, a relationship can be seen although the in-situ measurements seem to lag a 
little behind the satellite soil surface moisture observations which also exhibit more sudden 
changes. The lag is estimated to be around 10 hours (Figure 3). This feels like a true representation 
of reality since the meter is buried into the soil while the satellite observes the surface moisture 
only. Precipitation first falls on the surface before being absorbed into the ground layer which also 
has more inertia and therefore changes more slowly. 
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Figure 3: Above is the combined plots for satellite data and measured data at Heiðmörk, the 
lag can clearly be seen. Below is the same data but station data has been corrected for 10-
hour lag to show the alignment of peaks. 

 

Since the measuring station measures every 10 minutes but the satellite has only a few irregular 
overpasses per day, we need a method to match a timestamp for satellite data to station data. To do 
this, a simple Python script was developed to iterate over satellite data timeseries and match each 
value to the value in the measured timeseries with the closest timestamp while correcting for time 
lag and within reasonable time difference. This gives us two variables to compare for correlation 
in a scatter plot (Figure 4). 
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Figure 4: Measured, lag-compensated data and satellite date plotted against each other. 
Some correlation can be seen, despite noisy satellite data compared to in-situ data. 

 

Figure 5. In situ soil moisture data from Heiðmörk (green dots), Seyðisfjörður (orange dots) 
and satellite soil moisture (SSMA red dots) with precipitation data in the background (pink 
for Seyðisfjörður, grey for Hólmsheiði). 

 

Figure 5 shows two timeseries of monitored soil moisture in Heiðmörk and Seyðisfjörður. Even 
though there are only a few months shared data and about 400 km apart similar trends can be seen. 
We see that when there are large rainfall events (grey and pink lines) the soil moisture meters react. 
We also see the SSMA (note the value is calculated for the east coast of Iceland) responding to the 
precipitation in Seyðisfjörður. 

The API index was calculated for Hólmsheiði (data series 2008–2020, Figure 6) and Seyðisfjörður 
(data series 1995-2020, Figure 7). Good correlation is between highest annual API values and years 
with landslide events in Seyðisfjörður. As can be seen in Figures 6 and 7 the API index is much 
higher in Seyðisfjörður than in Hólmsheiði as expected since mean annual precipitation is almost 
double the amount in Hólmsheiði. The high value of API in December 2020 is particularly 
noticeable and is much higher than ever before in the data series and linking it to the events in 
December 2020 gives hopes it can be used as a predictive value. The current thresholds used to 
issue warnings to the landslide analysts on watch is based on certain rate of annual precipitation 
within selected time periods (1-h, 3-h, 6-h 12-h, 24-h, 48-h, and 72-h see in more detail in discussion 
chapter) (Sandersen et al., 1996). Analyses on the time periods and how often the thresholds have 
been reached gives an idea of how to link the data (Table 3). 
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Table 3. Date and amount of rainfall (in mm) where 24-h, 28-h and 72-h thresholds were 
reached in Seyðisfjörður, and if it resulted in a landslide or not. API values for comparison. 
Landslides are marked yes/no but in two incidents the landslide occurred the day before the 
48h and 72h thresholds were reached. 

Date 24h p 48h p 72h p API Landslide 

11.9.1998 117   180 no 

1.10.2001 148   232 yes 

11.11.2002 160 174  314 yes 

1.12.2002 0 160  323 yes 

10.10.2009 129   203 no 

26.8.2015 76 169  185 no 

23.6.2017 164 180  255 yes 

25.6.2017 1 165  259 yes-1d 

18.12.2018 66 159  315 yes 

24.10.2020 108   227 no 

15.12.2020 171 172  460 yes 

17.12.2020 140   635 yes 

19.12.2020 4 145 238 666 yes-1d 

28.12.2020 7 177  463 no 

 

 

 
Figure 6. Precipitation (dark blue line) and API from 1995 (grey dots) and coloured lines to 
draw out specific years (pink, green, light blue, cyan, magenta, yellow, grey, and black) with 
landslide events (black dots and year plotted next to it) in Seyðisfjörður. 
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Figure 7. Precipitation (dark blue line) and antecedent index from 2008 (grey dots) and black 
line for API in 2020 from Hólmsheiði. Green line shows in situ soil moisture for 2020 from 
Heiðmörk (the measured value is exaggerated by 50%). 

 

The analysis of historical data is shown in Figure 8. In this analysis each day has a single SSMA 
value, a single mean rainfall value, and a landslide code of 0 for no landslides and 1 for one or more 
landslides. Plotting both timeseries and marking the landslides (Figure 8a,b) shows landslides are 
distributed throughout the study period, while wrapping the data by year shows an absence of 
landslides for the first three months of the year, and the highest incidence in the last two months 
(Figure 8c,d). SSMA shows some seasonality (Figure 8c), with the highest and lowest anomalies 
appearing in the summer months, but overall, both timeseries do not show pronounced seasonality, 
and so this was excluded from consideration for time series modelling. Wrapping both timeseries 
by landslide shows the trends leading up to and immediately after a landslide (Figure 8 e,f), and 
reveals that on the day of a landslide both SSMA and rainfall are typically high, and while rainfall 
usually increases in the run up to the day of the landslide, SSMA sometimes increases and some-
times has remained elevated for some time prior to a landslide. Another way of visualising whether 
days with landslides are different to normal days is to compare histograms of SSMA and rainfall 
for days with landslides and days without (Figure 8 g,h). Here we can see that landslides only occur 
on days with positive SSMA values, while days without landslides range across the full range of 
SSMA values, from –3 to 1. Landslides occur on days with rainfall values spanning the whole of 
the observed range. We can get a better idea of the exact relationship between each of the timeseries 
and landslides by plotting the ratio of days with landslides to total days within bins of SSMA and 
rainfall, effectively finding the ratio of the histograms discussed previously (Figure 8i,j). For 
negative SSMA, there are no observed landslides, and then the fraction of days with landslides 
increases linearly for positive values, although the fractions remain very small. For rainfall, the 
fraction of days with landslides increases across the full range of observed rainfall, with landslides 
occurring on the rainiest days recorded. To get a continuous estimate of landslide probability as a 
function of these datasets we can fit a logistic model, which we do separately for SSMA and rainfall 
in Figure 8 k,l. Both models show an increasing probability of a landslide with increasing values, 
however while landslides become almost certain for very high rainfall values, the probability of a 
landslide as a function of SSMA does not exceed ~4%.  
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Figure 8. Overview of comparison between SSMA, rainfall and landslide data. The grid is 
arranged such that left and right columns show the analysis for SSMA and rainfall, 
respectively, while each row shows a specific analysis applied to both datasets separately. 
(A, B) The whole timeseries of SSMA and rainfall data, with landslides marked as vertical 
dashed lines. (C, D) The data wrapped by year to show any seasonality present in the data. 
(E, F) The data wrapped by landslide to show trends in SSMA and rainfall in the run up to, 
and immediately after a landslide. Time on the x axis is given as days after landslide. (G, H) 
Histograms comparing SSMA and rainfall on days without landslides (blue) and days with 
landslides (red). Note that the histograms are normalised so that the “days with landslides” 
histogram, which has very few days in it, is visible. (I, J) Ratio of number of days with 
landslides to total number of days for bins of SSMA and rainfall. (K, L). Logistic model fit to 
the SSMA and rainfall data. 
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To summarize, we can say that rainfall serves as a much better predictor of landslides than SSMA. 
However, so far, we have considered the SSMA and rainfall timeseries in isolation – both datasets 
combined may give better fit. Plotting rainfall against SSMA (Figure 9) shows that while landslides 
occur across the full range of observed rainfall, they do not occur for negative SSMA values. In 
this way, adding SSMA to the model should result in more accurate probabilities, as days with low 
rainfall onto dry ground will be discounted, so while rainfall would remain the main predictor for 
landslides, it seems likely SSMA would be a useful supplement providing more information. 

 

 
Figure 9. Plot of SSMA against rainfall for days without landslides (blue) and days with 
landslides (red). We divide the spaces of SSMA-rainfall into four conceptual quadrants, (1) 
positive SSMA, high rainfall, comparatively higher chance of a landslide, (2) positive SSMA, 
low rainfall, comparatively lower chance of a landslide, (3) negative SSMA, low rainfall, 
negligible chance of a landslide, (4) negative SSMA, high rainfall, very rare scenario, chance 
of landslide unknown. 

 

We compare this joint SSMA+rainfall model with the two datasets treated separately in table 1, 
which shows the false positive and false negative rates, as well as the proportion of landslides 
missed. Note that with a threshold of P=0.5 for a positive prediction, the SSMA alone model makes 
no positive predictions (as the probability never gets above 0.05, see Figure 3k). Overall, the 
addition of SSMA timeseries to the rainfall model does not improve the model performance, which 
is quite poor overall, with a 50% false positive rate and 80% of landslides being missed. 
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Table 4. Assessment of logistic regression of landslide data against the timeseries, alone and 
in combination. The threshold for prediction of a positive event was taken as P=0.5. 

Statistic SSMA Rainfall SSMA +rainfall 

Proportion of 
positives that are 
false 

na 0.5 0.5 

Proportion of 
negatives that are 
false 

0.0060 0.0048 0.0048 

Proportion of 
landslides missed 

1.0 0.8 0.8 

    

 

 

However, for an operational system, we could choose any threshold probability for triggering a 
warning. The exact threshold chosen defines the proportion of true and false positives and negatives 
that the system will generate. By iterating over thresholds from 0 to 1 and calculating the True 
Positive Rate (TPR, true positives divided by total positives) and False Positive Rate (false positives 
divided by total positives) from the historical data, we trace out a curve in TPR-FPR space that 
shows visually the trade-off between the two for a given model. This is known as the Receiver 
Operating Characteristic (ROC) curve, as shown in (Figure 10a), where each model under 
consideration (rainfall, SSMA, and rainfall and SSMA combined) defines a separate curve. 
Repeating this process for the False Negative Rate (FNR, false negatives divided by total 
negatives), and False Positive Rate (false positives over total positives) gives the Detection Error 
Trade-off (DET) curve, shown in Figure 10b. The Area Under Curve (AUC) value, which is simply 
the integral of the ROC curve gives an estimate of the performance of a model – an ideal model as 
an AUC of 1, as the TPR is 1 for all thresholds above 0 for a model that always gives true positive 
predictions, with less than idea models have an AUC below this. The combined model 
(SSMA+rainfall) has a slightly higher AUC value, and therefore we can say it does perform slightly 
better. For this model, the ROC curve shows we can get up to a TPR of ~0.85 while keeping the 
FPR below 0.1, after which the latter starts rising rapidly. However, the DET shows there is no 
threshold that gives a FNR of below 5%. 
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Figure 10. (a) Receiver Operating Characteristic (ROC) curve and (b) Detection Error 
Trade-off (DET) curve for the three logistic models: SSMA, rainfall, and rainfall and SSMA 
combined. Note the nonlinear x and y scales of the DET curve. 

 

In the preceding analysis we have focussed on discrete model predictions (either a landslide occurs, 
or it does not, based on the probabilities output by the model relative to some threshold), but it is 
useful to look at the output model probabilities themselves to see if they make sense, as these raw 
values are useful for more detailed hazard assessments; for instance, to see how probability 
compounds over longer periods. A good way to assess their validity is using a calibration plot, as 
shown in Figure 11a. The time series of landslide probabilities output by each model are binned by 
probability, and then within each bin the mean model probability and the fraction of actual 
landslides that occurred on those days are calculated. For an ideal model, plotting these values 
against each other should give a straight line through the origin of slope 1, which is to say that when 
the ideal model gives a 10% probability of a landslide, landslides happen 10% of the time, when 
the model gives a probability of 20%, landslides actually happen 20% of the time, and so on. Models 
with a finite amount of data will show a trend oscillating about the 1:1 relationship due to random 
affects, but systematic deviation from the 1:1 relationship indicates some bias in the model. For our 
three logistic models, we can see that the SSMA model never gives any high probabilities, so only 
one point is visible for the origin, while for rainfall and rainfall+SSMA, there is a lot of noise due 
to the small number of positives in the dataset, but not much obvious bias, or difference between 
the two.  

In Figure 11b we show the landslide probabilities output by each model as histograms, with a 
logarithmic y scale to make the small number of high probabilities visible. An ideal model here 
looks like two peaks at either end of the x axis, one at p=0 and one at p=1, as an ideal model only 
makes perfect predictions (i.e., there definitely will be or won’t be a landslide). Here we can see 
that the probabilities from the SSMA model are all below ~0.05 while the rainfall and 
rainfall+SSMA model have a long tail with a few probabilities up to ~0.8. However, it is not 
obvious if the addition of the SSMA data makes the joint model look more like the ideal model. 
Figure 11c shows the same histograms but zoomed in on low probabilities and with a linear y scale 
to investigate the bulk of the distribution, revealing how the addition of SSMA to the rainfall model 
increases the number of very low probabilities, showing that it is having the effect of lowering 
probabilities on very dry days, as we anticipated earlier. 
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Figure 11. (A): Calibration plot for the three different logistic models, showing the fraction 
of landslides that occurred for bins of forecast probability. For an ideally calibrated model, 
landslides will occur 20% of the time the model predicts a landslide with 20% probability, 
30% of the time the model predicts a landslide with 30% probability, etc. This ideal 
relationship is given by the grey line. Small datasets will scatter around this line due to the 
large effects of chance on a small sample size, but systematic offsets are indicative of a poorly 
calibrated model. (B): histograms of all predicted landslide probabilities for the SSMA, 
rainfall, and SSMA+rainfall models respectively. Note the logarithmic y scale – most of the 
landslide probabilities are very low. An ideal model would have two peaks at probabilities 
of 0.0 and 1.0 and nothing in between – i.e., all days with landslides would have a probability 
of 1.0 for a landslide and every day without a landslide would have a landslide probability 
of 0.0. (C): the same histograms but plotted with a linear y scale and the x scale zoomed in 
to very low probabilities. Note the combination of rainfall and SSMA shifts. 

 

We also desire to forecast landslides in the future rather than on the day the observations of rainfall 
and SSMA are made. Inspecting Figure 8e,f, the rainfall and SSMA time series seem autocorrelated, 
so we might expect to be able to make probabilistic forecasts of these values a few days into the 
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future and therefore estimate the probability of landslides over a similar horizon. To make forecasts 
of landslide probabilities, we implemented a full Bayesian model in the Stan probabilistic 
programming language. An overview of the model is shown in Figure 12. We model the timeseries 
of SSMA and rainfall using the Autoregressive Moving Average (ARMA) model implemented by 
(Alstott, 2022), and then model the landslide timeseries as a logit parameterised Bernoulli 
distribution (Carpenter et al., 2017) distributed about a linear function of the modelled SSMA and 
rainfall. 

 

 
Figure 12. The Bayesian statistical model implemented in the Stan probabilistic 
programming language. 

 

The model was run for 1000 samples on four parallel chains and diagnostics (effective sample size 
and 𝑅𝑅�) gave acceptable values. An example output of the model is shown in Figure 13, which shows 
the fit to the data for the last one hundred days of the time series, and then the forecast for the 
following seven days. The model describes the data well and we can make forecasts of rainfall and 
SSMA a few days ahead, although the quality of the forecast degrades. It should be noted that here 
the SSMA and rainfall are modelled as two separate timeseries, future work will model the former 
as a function of the latter, which will allow better SSMA forecasts, and therefore better landslide 
forecasts using rainfall forecasts from IMO’s Harmonie numerical weather prediction mode. The 
model forecasts the probability of a landslide on a given day, as well as the cumulative probability 
of a landslide by a given day. Despite the probability of a landslide on a given day being low, 
cumulative probabilities have the potential to rise to high values during periods when high rainfall 
/ SSMA are forecast. Although this model is just an early prototype, we present it here to show the 
types of forecasts that can be made by combining rainfall and soil moisture information with the 
landslide record in a Bayesian model. 
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Figure 13. Example output of the Bayesian forecast model for the last one hundred days of 
the time series, and a forecast for the following 7 days. The top two graphs show the modelled 
rainfall and SSMA. The tinted area is the mean value plus and minus one standard deviation, 
with the plot before the grey line representing the modelled period for which data is available 
and the period after the grey line the forecast for the future. The lower two graphs show the 
probability of a landslide on a given day and probability of a landslide by a given day (i.e., 
the cumulative probability of a landslide having occurred by that day). 

 

By linking the API to the soil moisture data, both in situ and satellite soil moisture the forecast 
model is expected to improve but with the scope of this project we did not manage to complete 
those calculations. 
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4  Discussion 

Landslide early warning systems 
Landslides triggered by heavy rain and/or snowmelt have been increasing in the past decades in 
mountainous and hilly regions around the world and due to climate change it is expected to rise 
even more. For the past decades the use of rainfall thresholds on regional and local scales have been 
used to try to forecast such events and give out warnings to the public. These methods are one of 
many mitigation methods available for reducing the risk of life (Picuillo et al., 2019).  

These systems are called landslide early warning systems (LEWS) and can be categorized into two 
systems that are defined by the scale of the forecasted area (Figure 14). A local system that 
addresses a single slope or small area are named local LEWS (Lo-LEWSs) and system that operate 
on regional scales or big areas are referred to as territorial systems (Te-LEWSs) (Piciullo et al., 
2018, Guzzetti et al., 2020).  

Local landslide early warning systems (Lo-LEWSs) normally operate with more instruments that 
monitor not just meteorological factors, but surface and subsurface conditions and deformation 
(Entrieri et al., 2012). The systems are operationally much more complex than regional systems. 
After the catastrophic landslide events in the town of Seyðisfjörður in 2020, a comprehensive 
network was installed to monitor slope movements above a part of the settlement. It has now been 
operating for over a year. 

Early warning systems operating at a regional scale are used to assess the probability of occurrence 
of multiple landslides over a predefined area. These systems most often focus on shallow landslides 
and are designed to forecast landslides in certain areas (Calvillo, et al., 2015), regions (Baum and 
Godt, 2010) or even whole countries (Piciullo et al., 2017), but they cannot accurately predict where 
the next event will occur. Typically, these systems operate on network of monitors that measure 
meteorological factors with the aid of historical events and precipitation to predict the probability 
of next event (Picuillo et al., 2017).  

Multiple different approaches to create precipitation thresholds have been utilized in the past. Many 
of them have been very successful and others not lived up to their full potential, which is often due 
to lack of registered events. But in recent years the focus has been on antecedent soil moisture to 
enhance the precipitation thresholds (Zhao et al., 2019, Zhao et al., 2021 and Abraham et al., 2021).  

The scope of this research is to enhance the regional landslide early warning system in Iceland. The 
current system runs on a rainfall threshold method called intensity duration (ID) design by Sanders 
et al. (1996) that have been adapted to Iceland. Threshold values that based on calculating the 
critical water supply as percentage of the mean annual precipitation and the duration of each 
precipitation event. But to improve forecasting methods the calculated threshold values for 
precipitation needs to be updated and include soil moisture with the aid of hydrological models and 
soil moisture measurements with data from in-situ instruments and satellites. 
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Figure 14. Conceptual model of a landslide early warning system (LEWS) that includes soil 
saturation. Based on Krøgli et al. (2018). 

5  Conclusions and further work 
In conclusion, we can address our three original questions: 

(1)  Can soil moisture content products from EUMETSAT be used to improve the definition 
of thresholds for landslide events in Iceland? 

We have demonstrated that (i) soil moisture products from EUMETSAT show a clear relationship 
with in-situ soil moisture measurements currently made in Iceland, (ii) there is a clear relationship 
between elevated soil moisture detected from satellite and an increased landslide risk, and (iii) that 
the addition of estimates of soil moisture anomaly somewhat improves logistic models relating 
rainfall to landslide probability (as measured by AUC), mostly for anomalously dry days. 

Many current Te-LEWs, including the system currently in operation at IMO, use API as a proxy 
for soil moisture, and future work could look into the possibility of combining API and satellite 
based estimates to better estimate soil moisture. The Bayesian model presented in Figure 12 could 
provide a good framework for this, allowing soil moisture to be modeled as a function of past 
rainfall and operational satellite products, such as from SMOS and ASCATT, both of which are 
available over EUMETCAST. This model could be physically based and implemented as e.g. a 
Kalman filter, or a basic timeseries model such as ARIMAX. Forecast rainfall from the Harmonie 
numerical weather prediction model could then be used to forecast soil moisture and consequently 
improve the forecast of landslide hazards. It is possible that API is capturing some non-soil moisture 
related effect of rainfall that increases landslide risk a few days after precipitation (e.g. waterlogging 
of vegetation), and this effect could be included by fitting the logistic model to some function of 
soil moisture and lagged rainfall from the previous few days. In this way the model might be 
considered to be implicitly finding an API optimised for landslide estimation, while also including 
a “best guess” of soil moisture. Such a system would need to be compared with the current API 
based system. 
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(2)  Are the satellite products frequent enough to help with short to medium term advance 
warning prior to an event? 

Given that there is a clear relationship between soil moisture, rainfall, and landslide probability, 
that probability can be forecast to the extent that soil moisture and rainfall can be forecast. We have 
demonstrated that satellite based soil moisture products are frequent enough to fit simple timeseries 
based forecast models for at least a short term warning. 

(3)  If this methodology is successful at a local level, can this methodology be translated and 
used operationally in an early warning system for Iceland? 

 
We have demonstrated the potential for a combined soil moisture and rainfall based scheme for a 
region is Iceland. The next steps are to implement a full model and bridge the gap between the 
national, regional and local scales. The approach here estimates the probability of landslides over 
an area on the order of thousands of square kilometers. This is by necessity, as our predictor 
variables (rainfall, ssma) are only available at a coarse resolution or at specific point measurements, 
and we need to integrate over a large enough area to get a large enough sample of landslides to be 
able to fit a statistical model. Similar systems could be set up for other regions of Iceland, with each 
region of consideration delineated such as to maximize homogeneity in terms of climate and 
geomorphology, while remaining large enough for statistical analysis. These regional probabilities 
could then be “downscaled” by finding a relationship between landslide probability and geo-
morphological and ecological factors (slope, aspect, soil type, vegetation type), and apportioning 
the regional probability accordingly at the scale common to the rasters of surface properties. 

A point worth mentioning when designing an early warning system is that the analyses here are 
based on measured precipitation at selected stations but the precipitation from the forecasting model 
of the IMO; Harmonie does not always predicts the measured situation. This is especially true where 
the orographic effect has a great impact and the forecast model does not manage to mimic the 
situation. This applies to Seyðisfjörður in a certain wind direction. When moist air comes from the 
NA direction over Seyðisfjörður, conditions can arise where the air mass is lifted and that causes 
the moisture to increase and more precipitation falls than had been expected. 

High spatial resolution estimates of rainfall and soil moisture would likely allow more accurate 
localised forecasts to be made, and such datasets will likely become available in the near future – 
high resolution SAR based soil moisture products are under development, and the new improved 
radar network being installed in Iceland by IMO over the next few years could be calibrated to 
estimate rainfall, however this would likely necessitate a very different approach to that taken in 
this study. 

One further avenue of future work would be an attempt to bridge the gap between Lo-LEWSs and 
Te-LEWSs. In Seyðisfjörður we now have a comprehensive local monitoring system, and the 
detailed observations those systems will make before and during future landslides will likely inform 
the small scale geomorphological variables used to downscale regional scale probabilities. 
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