Permanent Deformation of Aggregate Skeleton in Asphalt Mixes

Contents

- 1. Introduction
- 2. Specimen Preparation
- 3. Tests
- 4. Results
- 5. Conclusion

Aim

To characterize the aggregate component in asphalt mixtures

Mix Design

Selected mixes

PAC 0/16

SMA 0/11

DAC 0/16

Marshall mix design Complete Marshall mix design – DAC Volumetric mix design – PAC, SMA 2 x 50 4.54 kg blows, falling height 0.457 m

Mix Gradation

Aggregate Skeleton Specimen Preparation

•Aggregate skeleton specimens composed of aggregate fractions only.

NTNU

 Minimum aggregate fraction determined by means of visual observation during mixing and compaction.

•Density of aggregate skeleton determined based on the cumulative aggregate fraction content in the skeleton and mix design density.

agg density = $\frac{\text{cum agg \%} > \text{min size}}{100}$ x mix design density

Aggregate Skeleton Specimen Preparation

- •Min size = 0.5 mm (PAC), 2 mm (SMA), 0.063 mm (DAC)
- •0.7% water by weight added to PAC and DAC aggregate specimens to facilitate uniform mixing.
 •No water added to SMA.
- •Aggregates mixed by hand.

NTNU

Aggregate Skeleton Specimen preparation

NTNU

Failure tests specimens compacted in 3 layers
Permanent deformation tests specimens compacted in 5 layers

Compaction - Kango hammer and vacuum system

External membrane composed of 3 latex membranes and an optional geotextile at high confinement (150 & 250 kPa) permanent deformation tests

Aggregate Skeleton Specimen preparation

Instrumentation

Specimen instrumented in the middle third Axial and radial deformation measured

Tests Performed During the Characterization of Aggregate Skeleton

Failure Tests and Permanent Deformation Tests

- Failure tests strain controlled constant displacement tests performed under constant confinement
- Permanent deformation tests:
- 1. Cyclic vertical stress signal + cyclic confining stress
- 2. Cyclic vertical stress signal + constant confining stress

Testing equipment

IPC UTM 25

Strain Controlled Monotonic Failure Test Conditions

confinement [kPa]		31	63	125	188	250	313
strain rate [% /sec]	0.02	PAC, SMA & DAC	PAC & DAC	DAC	PAC & SMA	SMA	PAC
	0.2	PAC	PAC	-	-	-	-

Failure Test Results

PAC and SMA aggregate skeletons retain considerable post-peak stability even at high strains Dilation is the main mode of deformation

Monotonic failure test results

failure stress: DAC > SMA > PAC

Pavement Stresses Analysis

- Triaxial vertical and triaxial confinement in the pavement are cyclic in nature
- cyclic vertical stress + cyclic confinement would provide a better simulation of the triaxial stresses in the pavement

Consequently:

Pilot permanent deformation tests were performed on PAC and DAC to investigate the effect of cyclic confinement

- 1. cyclic vertical stress + cyclic confinement
- 2. cyclic vertical stress + constant confinement

^{1.} Introduction 2. Specimen Preparation 3. Tests 4. Results 5. Conclusions

1. Introduction 2. Specimen Preparation 3. Tests 4. Results 5. Conclusions

1. Introduction 2. Specimen Preparation 3. Tests 4. Results 5. Conclusions

Perm deform. test conditions – stress ratio

 σ_1 = peak vertical stress for permanent deformation tests

 f_{ca} = maximum stress determined from failure tests a, b = coefficients determined from failure tests σ_3 = peak confinement in cyclic tests or confinement in constant confinement tests

Perm deform. test conditions – Pilot Tests PAC

Pilot permanent deformation test results

 ϵ_p cyclic confinement > ϵ_p constant confinement

Perm test conditions – All cyclic confinement tests

Permanent Deformation Results

$$\varepsilon_p = AN^B + C\left(e^{\frac{DN}{1000}} - 1\right)$$

$$I_1 = \sigma_1 + 2\sigma_3; \ J_2 = \frac{(\sigma_1 - \sigma_3)^2}{3}$$

Permanent Deformation Results

10%

1%

10%

PAC

10%

I₁ [MPa]

20

SMA>PAC>DAC SMA & DAC more sensitive to stress conditions

than PAC

perm rest.:

1. Introduction 2. Specimen Preparation 3. Tests 4. Results 5. Conclusions

1%

1%

10

Permanent deformation results

•Severe perm in SMA and PAC close to failure test stresses

•Severe perm in DAC much lower than failure stresses

Conclusions

- The permanent deformation of aggregate skeletons under cyclic confinement is higher than the permanent deformation under constant confinement.
- The permanent deformation behaviour of SMA and DAC aggregate skeletons is much more sensitive to stress conditions in comparison to that of PAC aggregate skeleton.
- SMA and PAC stone aggregate skeletons are more resistant to permanent deformation in comparison to the skeleton in the DAC.

Conclusions

- Severe permanent deformation in the PAC and SMA stone skeletons takes place at stresses similar to the maximum stress in the failure tests.
- Severe permanent deformation in the fine DAC skeleton occurs at much lower stresses in comparison to the maximum stress in the failure tests.
- The maximum stress in the failure tests is a good indicator of stress conditions leading to severe permanent deformation for the stone skeletons but a poor indicator for fine skeletons such as DAC.

Thank you

PAC skeleton failure Test results

results linear and similar at both 0.2% and 0.02%

Aggregate Skeleton Specimen Preparation

- •PAC agg < 0.5 mm segregated during mixing.
- •SMA agg < 2 mm segregated during compaction.
- •DAC < 0.063 mm segregated during mixing and compaction.
- •Min size = 0.5 mm (PAC), 2 mm (SMA), 0.063 mm (DAC)
- •0.7% water by weight added to PAC and DAC aggregate specimens to facilitate uniform mixing.
 •No water added to SMA.

•Aggregates mixed by hand.

NTNU

Aggregate Skeleton Specimen preparation

Instrumentation

NTNU

Specimen instrumented in the middle third
LVDTs attached to holders glued on the membrane in monotonic failure tests
LVDTs attached to studs embedded in the specimen in permanent deformation tests
Axial and radial deformation measured

Perm deform. test conditions – Pilot Tests DAC

Nature of Stresses in the pavement

layer	description	η ₁ [MPa.s]	η ₂ [MDo. o]	E ₁	E ₂	Poissons			
			[IVIPa.s]	[IVIFa]	IVIFaj	ratio [-]			
top layer 40 mm thick	Dense asphalt concrete	9557	38	868	384	0.35			
Second layer 60 mm thick	Open asphalt concrete	1799	28	391	200	0.35			
Third layer 80 mm thick	Stone asphalt concrete	1953	48	616	145	0.35			
fourth layer 90 mm thick		1683	55	764	131	0.35			
fith layer 250 mm thick	Cement bound asphalt aggregate base	-	-	2200	-	0.45			
subgrade	over 5 m well compacted sand	-	-	150	-	0.5			
wheel load characteristics	std. wide based tyre 45 kN load, 0.9 MPa tyre pressure, 0.123 m contact radius, 20 km/h speed								
temperature	between 38 - 40^{0} C at the top of the pavement and 32 - 34^{0} C at the top of the base								

triaxial confinement = $\frac{1}{3}(I_1 - \sqrt{3J_2})$, triaxial vertical = $\frac{1}{3}(I_1 + 2\sqrt{3J_2})$

Nature of Stresses in the pavement

Perm stress conditions

0

stress ratio =
$$\sigma_1 / f_{ca} = \frac{\sigma_1}{a \left(\frac{\sigma_3}{\sigma_{3,0}}\right)^b}$$
 $\sigma_3 \square$

Permanent deformation results 1.5SMA 10% and fail. stress DAC failure stress C 10% and fail. stress 0.5 **DAC 10%** I₁ [MPa]

severe perm in SMA and PAC close to failure stresses Severe perm in DAC much lower than failure stresses

PAC Skeleton – failure test results

Influence of confinement >> influence of strain rate

- Out of the 10 tests conducted at cyclic confinement resulted in higher permanent deformation in comparison to the tests conducted at constant confinement and at similar stress ratios.
- **1. Introduction 2. Specimen Preparation 3. Tests 4. Results 5. Conclusions**