Workshop on Pavement Design Systems and Pavement Performance Models, March 22-23, 2007, Reykjavík

A New Flexible Pavement Design Framework for Cracking using Using HMA Fracture Mechanics and the Critical Condition Concept

Björn Birgisson and Reynaldo Roque

Department of Civil & Coastal Engineering University of Florida

- Background and Overview of HMA Fracture Mechanics Model and the Critical Condition Concept
- Determination of Input Parameters
- Field Predictions
- Implementation into Pavement Design
- Summary

Background and Overview of HMA Fracture Mechanics Model and the Concept of a Critical Condition

FDOT Multiyear Study

Mechanisms of Top-Down Cracking

- Stiffness Gradients (Temperature differential, Aging)
- Thermal Stresses
- Truck tire ribs induced tension
- Residual viscoelastic stresses

Fracture Models for Mixtures and Pavements

Simpler Testing and Design Calculations

Fracture Mechanics

- A Theory That Predicts the Effects of Cracks in Materials
- Importance
 - Cracks intensify stresses
 - Distinct from and greater than stress concentrations
 - Stress intensities accelerate distress and can dictate failure mechanism
 - Characteristics and distribution of cracks affect mixture fracture resistance

Stress Intensity ≠ **Stress Concentration**

* For a<<W

Representing Cracking Mechanism in Pavements

- VE Fracture Mechanics Model
- Predicts Crack Initiation and Growth Based on DCSE (energy associated with damage)
- Incorporates Fracture Threshold
 - Crack does not propagate with each load
 - Crack growth is stepwise, not continuous

- Damage = Micro-cracks
- Failure = Macro-crack initiation or growth
 - Driven primarily by tension
- Not all damage is permanent
 - There is a threshold separates damage from fracture (crack initiation or growth)
 - Damage is cumulative only when the threshold is exceeded
 - Damage below the threshold is healable

Evidence of Healing

Evidence of the Threshold

The Threshold

The Strain Energy required to initiate and/or propagate a crack:

- Total Fracture Energy (FE) = creep + elastic
- Dissipated Creep Strain Energy (DCSE) = creep only

Fracture Energy Failure Limits

The Threshold

- The threshold is **fundamental** independent of mode of loading and specimen geometry
 - Strength
 - Cyclic
 - Creep

The material can fail in two ways:

- If the accumulated creep exceeds the DCSE_f
- If the accumulated creep plus the elastic exceeds the FE

Potential loading conditions in the field

Cracking Mechanisms

- Mixture can withstand an indefinite number of load applications without failing — "Perpetual Pavement"
- Two possibilities
 - There is a micro-damage threshold
 - The rate of healing equals or exceeds the rate of damage

Determination of Model (Input) Parameters

Mixture Properties

Superpave Indirect Tensile Test:

- 1. Resilient modulus (Cyclic loading)
- 2. Creep (Constant load with time)

 $\mathbf{D}(\mathbf{t}) = \mathbf{D}_0 + \mathbf{D}_1 \mathbf{t}^{\mathrm{m}}$

- Dissipated energy \propto creep rate
- 3. Strength (Increase load until fracture)
 - Energy limits

Field Prediction Results

Modeling of Field Test Sections

Multiple pairs of poor and good performing sections throughout Florida

Over 18 pairs
(36 sections)
to date

Boundary Element Model of Pavement Structure

 Assumption: Asphalt layer is linearly viscoelastic; the rest layers are linearly elastic

Predicted Load Cycles to Failure for Field Sections with Known Top-Down Cracking Performance

 Used the HMA Fracture Model to calculate Number of Cycles to Failure (N_f) for crack to propagate 2"

The model was able to distinguish cracked from uncracked pavement sections

Implementation into Pavement Design

First Step: Use the Energy Ratio Concept

 The DCSE_{HMA} has to be greater than the DCSE_{min} for good cracking performance:

Energy Ratio Results

- Examined all sections
- Performance criteria: ER>1 ; DCSE_{HMA}>0.75

M-E Design Flowchart – Level 3

Definition of ER_{optimum} **For Design**

 Based on previous analyses, the optimum ER (minimum ER required) for design can be defined as

 $ER_{optimum} = \gamma / \phi$ Takes into account both the traffic and reliability effects

where

- $\gamma\,$ is the traffic factor
- φ is the resistance factor

Higher reliabilityHigher traffic load (ESALs)Lower resistance factorHigher traffic factorHigher required minimum ERHigher required minimum ER

Mixture Properties

• Binder Viscosity

- Global aging model and correction
- Elastic Properties needed for stress calculation
 - |E*|_{AC}: obtained from the master curve (MEPDG 1-37A & Florida version)
 - Poisson's ratio can be estimated from E_{AC}
- Superpave IDT parameters needed for ER calculation
 - Creep parameters (m-value, D_0 , D_1)
 - Energy limits (FE and DCSE_L)

- Estimated from basic relations developed based on the master curve and aging model
- Tensile strength S_t (Obtained from the stiffness)

Windows-Based Top-Down Cracking Design Tool

Design Software

Design Studio

- New Pavement Design using Energy Ratio
- Overlay Design using Energy Ratio

Welcome to The Cracking Tool !	
Please choose the following	
New Pavement Design Using Energy Ratio	
Overlay Design Using Energy Ratio	
Cancel	ОК

Output: Pavement Life Calculation

ER-Pavement Life Curve

Variation of ER with pavement age for different AC thicknesses

- ER drops down significantly in the first couple of years
- Sensitivity of ER to thickness is shown in the graph

Summary

- A new M-E pavement design tool for top down cracking based on HMA Fracture Mechanics, Energy Ratio, and the Critical Condition Concept
 - Combines mixture fracture properties with pavement thickness design
 - Validated on more than 30 field sections
 - Thickness design optimized for
 - traffic level and reliability
 - mixture type
 - binder type
 - The thickness optimization is an automated process

Question?

Would a Paradigm Shift in Pavement Analysis and Design Increase Our Understanding and Accuracy of Cracking Performance Prediction?

- Traditional Fatigue Approach
 - Continuous cumulative distress
 - Repeated averaged conditions
 - Structure homogeneous with time/loads
 - Mechanism constant

- Critical Condition Approach
 - Stepwise discontinuous distress
 - Few critical design conditions
 - Structure changes with time/loads
 - Mechanism changes

Questions

