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Background and Overview of 
HMA Fracture Mechanics 

Model and the Concept of a 
Critical Condition



FDOT Multiyear Study

Mechanisms of Top-Down Cracking

Stiffness Gradients (Temperature differential, Aging)

Thermal Stresses

Truck tire ribs induced tension

Residual viscoelastic stresses

Fracture Models for Mixtures and Pavements
Simpler Testing and Design Calculations



Fracture Mechanics

•
 

A Theory That Predicts the Effects of Cracks 
in Materials

•
 

Importance
–

 
Cracks intensify stresses

•
 

Distinct from and greater than stress 
concentrations

–
 

Stress intensities accelerate distress and can 
dictate failure mechanism

–
 

Characteristics and distribution of cracks affect 
mixture fracture resistance



Stress Intensity ≠
 

Stress Concentration

Hole/Void

Crack σmax = 3σ
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Representing Cracking Mechanism in 
Pavements
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HMA Fracture Mechanics

•
 

VE Fracture Mechanics Model
•

 
Predicts Crack Initiation and Growth 
Based on DCSE (energy associated 
with damage)

•
 

Incorporates Fracture Threshold
–

 
Crack does not propagate with each load

–
 

Crack growth is stepwise, not continuous



•
 

Damage = Micro-cracks
•

 
Failure = Macro-crack initiation or growth
–

 
Driven primarily by tension

•
 

Not all damage is permanent
–

 
There is a

 
threshold –

 
separates damage from 

fracture (crack initiation or growth)
–

 
Damage is cumulative only when the threshold is 
exceeded

–
 

Damage below the threshold is healable

Failure Limits –
 

Key Observations



Evidence of Healing
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Evidence of the Threshold
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Fracture Energy

MR

xSt 

(Strength)

εf (Fracture)

DCSE

St
re

ss
, σ

Strain, ε

EE

FE = DCSE + EE

The Strain Energy required to initiate and/or 
propagate a crack:

Total Fracture Energy (FE) = creep + elastic
Dissipated Creep Strain Energy (DCSE) = creep only

The Threshold
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DCSE 2

EE2

EE
1

Strength (Fracture) Test

ε

σ

εfail1

St1

εfail2

St2

MR2

MR1

Fast Loading Rate

Slow Loading Rate

St1 > St2

εfail1 < εfail2

Low Damage 
prior to Fracture

High Damage 
prior to Fracture

However
21 DCSEDCSE ≅

21 FEFE ≅

Fracture Energy Failure Limits
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•
 

The threshold is fundamental –
 

independent of 
mode of loading and specimen geometry

–
 

Strength

–
 

Cyclic

–
 

Creep

The Threshold



The material can fail in two ways:
If the accumulated creep exceeds the DCSEf
If the accumulated creep plus the elastic exceeds the FE

*
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Potential loading conditions in the field
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Endurance Limit (Carpenter et al, 2003)

•
 

Mixture can withstand an indefinite 
number of load applications without 
failing      “Perpetual Pavement”

•
 

Two possibilities
–

 
There is a micro-damage threshold

–
 

The rate of healing equals or exceeds the 
rate of damage



Determination 
of 

Model (Input) Parameters



Superpave Indirect Tensile Test:

δH

δV

Mixture Properties

1.
 

Resilient modulus (Cyclic loading)

2.
 

Creep (Constant load with time)

3.
 

Strength (Increase load until 
fracture)

•
 

Dissipated energy       creep rate∝

•
 

Energy limits

D(t) = D0 + D1 tm



Field Prediction Results



Multiple pairs of 
poor and good 
performing sections 
throughout Florida

Modeling of Field Test Sections

–
 

Over 18 pairs 
(36 sections) 
to date



Boundary Element Model of Pavement Structure

Assumption: Asphalt  layer is linearly viscoelastic; the rest 
layers are linearly elastic

pressure  tire

base
1h
2h

3h

mixtureasphalt viscoelastic

4h
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crack initial
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•
 

Used the HMA Fracture Model to calculate Number of Cycles to Failure (Nf

 

) for 
crack to propagate 2”
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•
 

The model was able to distinguish cracked from uncracked
 

pavement 
sections

Predicted Load Cycles to Failure for Field Sections with 
Known Top-Down Cracking Performance



Implementation 
into 

Pavement Design



•
 

The DCSEHMA

 

has to be greater than the DCSEmin

 

for good 
cracking performance:

DCSEHMA DCSEmin

MR

St
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DCSE
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DCSEHMA
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First Step: Use the Energy Ratio 
Concept
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•
 

Examined all sections

•
 

Performance criteria: ER>1 ; DCSEHMA
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Energy Ratio Results



AC Thickness
Modulus, 
Poisson’s Ratio

Layered Elastic 
Analysis

Stress 

Energy Ratio 

ER≈ EROpt Design Thickness

Mixture Properties Matrix
(DCSEL, FE, St

 

, Creep Rate)

M-E Design Flowchart – Level 3

no yes

Aging model w/ Design life

Material Models



Definition of ERoptimum For Design

optimumER γ /φ=

where

Based on previous analyses, the optimum ER  
(minimum ER required) for design can be defined as

γ

ϕ
is the traffic factor
is the resistance factor 

Takes into account both the 
traffic and reliability effects

Higher reliability 

Lower resistance factor

Higher required minimum ER

Higher traffic load (ESALs)

Higher traffic factor

Higher required minimum ER



Mixture Properties

•
 

Elastic Properties –
 

needed for stress calculation

•
 

Superpave
 

IDT parameters –
 

needed for ER calculation

•
 

Binder Viscosity 
-

 
Global aging model and correction

- |E*|AC

 

: obtained from the master curve (MEPDG 1-37A & Florida version)

- Poisson’s ratio can be estimated from EAC

- Creep parameters (m-value, D0

 

, D1

 

)

- Energy limits (FE and DCSEL

 

)

- Tensile strength St

Estimated from basic relations 
developed based on the master 
curve and aging model

(Obtained from the stiffness)



Windows-Based 
Top-Down Cracking 

Design Tool



Design Software



New Pavement Design using Energy Ratio

Overlay Design using Energy Ratio 

Design Studio



Output: Pavement Life Calculation

Automatic process for 
thickness optimization

Stress corresponds to the 
optimum AC thickness



Variation of ER with pavement age for different AC thicknesses

–

 

ER drops down 
significantly in the 
first couple of years  

–

 

Sensitivity of ER to 
thickness is shown 
in the graph  

ER-Pavement Life Curve

h2

h1

h3

h1 < h2 < h3:

h2 = optimum thickness

h1 = h2 -

 

2 

h3 = h2 + 2



A new M-E pavement design tool for top down 
cracking based on HMA Fracture Mechanics,  
Energy Ratio, and the Critical Condition Concept

Summary

• Validated on more than 30 field sections

• Thickness design optimized for 
– traffic level and reliability
– mixture type
– binder type

• The thickness optimization is an automated process

• Combines mixture fracture properties with pavement thickness design



Question?

•
 

Critical Condition 
Approach
–

 
Stepwise 
discontinuous distress

–
 

Few critical design 
conditions

–
 

Structure changes with 
time/loads

–
 

Mechanism changes

Would a Paradigm Shift in Pavement Analysis 
and Design Increase Our Understanding and 
Accuracy of Cracking Performance Prediction?

•
 

Traditional Fatigue 
Approach
–

 
Continuous cumulative 
distress 

–
 

Repeated averaged 
conditions

–
 

Structure homogeneous 
with time/loads

–
 

Mechanism constant



Questions
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