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Introduction

Unbound granular aggregates are extensively used in 
pavement structures
The number of heavy vehicles are increasing and the climate is 
changing
The knowledge of the deformation properties of unbound
aggregates are still quite limited 
Both the resilient properties (stiffness) and the resistance
against permanent deformations are affected by many factors
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Triaxial testing

Cylindrical sample covered with a latex membrane
Simulates the repeated loading of moving traffic (sinusoidal)
Measures both axial and radial deformation
– LVDTs (Linear Variable Differential Transformer) measures 

displacement
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(Dongmo-Engeland, 2005)
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Loading procedure

EN 13286-7 Multi stage loading procedure (CEN, 2000), High
stress level
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•5 sequences of confining stress

•Stepwise increasing deviatoric
stress

•Frequency: 10 Hz

•10 000 cycles per load step

•Sinusiodal loading

•Loading interrupted at 0.5 % for 
each load step
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Resilient properties of unbound
granular aggregates

Resilient properties:
– May be described by the resilient modulus - MR

and Poissons ratio ν
– MR is defined as:

• MR = σddyn/ εae

– Poissons ratio is defined as:
• ν = - εre/εae

In this presentation the resilient modulus is plotted as a function
of the mean stress
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Interpretation regarding
permanent deformations
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Permanent axial strain as a function of the number
of load cycles for one load sequence
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Interpretation regarding
permanent deformations
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Materials

Three materials were used througout the study
Askøy cubical gneiss (LA=17, FI=12)
– Main minerals are quartz and feldspar
– Refined through the crushing process

Askøy flaky gneiss (LA=20, FI=28)
– Main minerals are quartz and feldspar, but also some mica
– Taken from an early step in the crushing process

Swedish mica rich gneiss (LA=24, FI=24)
– Main minerals are feldspar, mica (33 %)
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Grain size distributions
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Grain shape and surface texture

Resilient modulus as a function of mean stress for two materials from Askøy,
n=0.35, with comparable degrees of saturation

Elastic and plastic/“failure” limit for two materials from Askøy,
n=0.35,  with comparable degrees of saturation
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Grading and fines

Resilient modulus as a function of mean stress three gradings with 
near the same degree of saturation
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Grading and fines

Elastic and plastic (“Failure”) limits for three gradings
with near the same degree of saturation (Paper V)
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Mineralogy and aggregate type

Resilient Modulus as a function of mean stress 
for Cubical gneiss from Askøy, 0/22 mm, n=0.35
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Resilient Modulus as a function of mean stress for 
Swedish gneiss , 0/22 mm, n=0.35
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Moisture

Single-sized coarse materials – water drains out
Well-graded materials – sensitivity to water increases with
increasing fines content
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Main conclusions (1) 
Grain shape and surface texture

It is difficult to isolate the effect of grain shape alone, as the dry 
density and mechanical strength may override the effect
Rounded materials are more compactable than angular
materials, but also more susceptible to permanent deformations
The effect of material grading interacts with the effect of grain
shape, as well-graded materials are less sensitive to changes
in the grain shape
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Main conclusions (2) 
Grading and fines

Well-graded materials with high fines content are more 
sensitive to changes in water content
Not only the content of fines is important, but also the
properties of the fines, like the specific surface area, 
mineralogy and grading
Single-sized materials may have almost the same deformation
properties as well-graded materials, dependent on the
mechanical strength
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Main conclusions (3) 
Moisture

In well-graded materials the sensitivity to water increases with
increasing fines content
The content of certain minerals in the fines, such as mica, 
affects the sensitivity to water
Water does not affect the deformation properties of single-sized
materials significantly
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Main conclusions (4) 
Dry density

Dry density is affected by parameters like grain shape, grain
size distribution, fines content and compaction method
The deformation properties of a well-graded material are mainly
influenced by the dry density up to a certain amount of fines
Dry density is one of the key parameters for the deformation
behaviour, as both the resilient modulus and the resistance to 
permanent deformations increases with increasing dry density
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Practical consequences
of the thesis

The mineralogy of the fines should be taken into account in 
criterias regarding frost and water susceptibility
New methods for compaction control in situ is recommended to 
assure high dry densities
Design methods based on information from triaxial testing 
should be developed, especially on the permanent deformation
behaviour
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