PROGRAM FOR ROAD CONSTRUCTION LIFE-CYCLE INVENTORY ANALYSIS

-development and experiences of use

Paula Eskola VTT Processes 21.3.2003

LIFE-CYCLE INVENTORY ANALYSIS PROGRAM FOR **ROAD CONSTRUCTION**

- 1. Scope
- 2. System boundaries
- 3. The LCA-program
- 4. Case studies
- 5. Conclusions

SCOPE

- Clear and functional LCA-methodology for road constructions
- Extensive database taking account of the special features of road constructions
- Inventory analysis program for calculation and comparison of constructions environmental loadings of the most common road
- Inclusion of industrial by-products (fly ash, crushed concrete waste, blast furnace slag)
- Simple and easy to use
- Applicability as part of routine road planning and decision-

SYSTEM BOUNDARIES

- Constructions are examined as entities
- Calculations are made for a chosen functional unit
- Period of use 50 years
- Calculations enable comparisons between individual structural components and work stages
- Primarily local or material-specific data is used
- Pavement and sub-grades are treated as separate entities, all though combination is also possible

SYSTEM BOUNDARIES: Materials

Pavements: different asphalt types

Base: crushed aggregate, crushed concrete waste, crushed BF-slag, bitumen gravel, soil cement (cement stabilisation)

Sub-base: crushed aggregate, gravel, fly ash, fly ash+cement, crushed concrete waste, BF-sand, crushed BF-slag, lightweight aggregate

Filter layer: sand, BF-sand, lightweight aggregate

Embankment fill: sand, crushed rock, lightweight aggregate

Structural courses

- 1. Pavement
- 2 Base course
- 3. Sub-base
 4. Lower sub-base
- Embankment
 Subground

SYSTEM BOUNDARIES: Functions

FUNCTIONS

INCLUDED

All significant life-cycle stages:

- Material production
 (By-products: storage area)
- Transportation of materials
- Road construction
- The use of road (pavement reconstruction, leaching)
- (Landfill disposal / by-products)

NOT INCLUDED

Stages with no effect on comparisons:

- Site clearance
- Functions associated with road use (lane markings, traffic signs, lights)
- Regular or seasonal maintenance (snowploughing, salting, sanding)
 Traffic emissions

Situation after use

PRINCIPAL ROAD CONSTRUCTION AND USAGE PHASES

Material production chains

	Starting point:
Natural	Bedrock excavation
aggregates	or excavation from
	ground
Cement and	Cement and Extraction of raw
lime	materials
Rubber	Production of crude
	oil
Industrial	Stockpile (by-
by-products	product production
	processes not
	included)

SYSTEM BOUNDARIES: Environmental loadings

I. Use of resources

- Natural raw materials
- Industrial by-products
- Energy and fuel consumption

2. Atmospheric emissions

- Carbon dioxide and monoxide
- Nitrogen oxides
- Sulphur dioxide
- Volatile organic compounds
- Particles

3. Leaching into the ground

 Heavy metals, chloride, sulphate

4. Other loadings

 Noise, dust, transportation distance

ENVIRONMENTAL IMPACT ASSESSMENT

EFFECT SCORING

- made on basis of expert assessment
- loadings were converted into relative values using the reference construction as base level
- impact categories were proportioned to one another using the comparative scores obtained from the expert assessment

INVENTORY ANALYSIS PROGRAM

- Suitable for routine calculations of environmental loadings of different road constructions, both common pavement structures and sub-grades
- Input data:
- dimensions of the construction
- materials and thicknesses of the structural courses
- transport distances of materials
- A number of standard graphical presentations are already included
- Presentation of environmental loadings for selected materials and courses by principal work stage or as total loading
- Rapid comparisons of pavement structures are possible
- comparisons possible as such, in relation to fixed reference or as effect scores

ENVIRONMENTAL LOADINGS OF SUB-GRADES

CONSTRUCTION TYPES

- Soil stabilisation
- Soil replacement
- Deep stabilisation
- Vertical drainage + drainage course
- Concrete pile slab

RECENT DEVELOPMENTS IN THE PROGRAM

- Background data checked and updated
- New materials added: lightweight aggregate, steel slag and soil cement
- Environmental loadings of cement updated
- Negotiations with other material producers
- A standard print-out with main results
- Testing of the program in actual road planning cases

CASE STUDIES

Structural layer	Natural aggregate	Crus hed concrete was te	Blast-furnace s lag	Fly as h+cement
	AB 20/1 2/0	AS 20 120	AB 20 420	AB 204 20
Base comse	250 mm Crushed stone 0=	eneration population	100 mm Grushed blass:	Jeonani Caushed stone
	(95) (91)	0=50	turnace stag	
Subse	250 maa	200 mard Carshed converse	2500mm	# 15 (15 The 15
			manage stage	cennents %
Leavel sup-base	LSU MAN	Sand Sand	Chamaine Mana (1977)	Sand
			limingoessling	
	500 mm			
	sand	Sand	Sand	Sand

ENVIRONMENTAL LOADINGS OF PAVEMENT STRUCTURES

WEIGHTED COMPARISON OF PAVEMENT STRUCTURES

LEACHING

CONCLUSIONS

- Simple and easy to use
- Suitable for routine calculations of environmental loadings
- Comparison of alternative constructions and presentation of results is easy
- Wider use would require adding more materials and working methods
- Advances the environmental consciousness of designers and contractors
- Motivates the development work of materials and construction equipment

