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Mechanistic-Empirical methods are 
simplifications of reality

• Response models are based on solid 
mechanics and must be validated for 
pavement materials

• Performance prediction models derived 
from laboratory tests must be 
validated/calibrated to in situ pavements



HVS: a ”large scale” laboratory test



Advantages of HVS testing

• Short test section, carefully constructed
• Intensive materials characterization
• Instrumented to measure response and 

performance
• Climatic conditions controlled or closely 

monitored
• All load applications are known exactly
• Testing can be carried out to failure



MDD

Multi Depth Deflectometer



Road Surface Deflectometer (RSD)



27 HVS tests on flexible pavements 
were used to calibrate the damage 

models in CalME

• Caltrans current methods, the R-value method, 
deflection reduction method for rehabilitation 
design

• “Classical” ME design (Asphalt Institute method)
• Incremental-recursive method



Models calibrated in CalME

• Asphalt stiffness as a function of reduced 
time (temperature and loading time)
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Models calibrated in CalME

• Asphalt stiffness as a function of reduced 
time (temperature and loading time)

• Stiffness of unbound materials as a 
function of confinement and of stress 
condition
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Models calibrated in CalME

• Asphalt stiffness as a function of reduced 
time (temperature and loading time)

• Stiffness of unbound materials as a 
function of confinement and of stress 
condition

• Reduction in asphalt stiffness caused by 
damage
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Models calibrated in CalME

• Asphalt stiffness as a function of reduced 
time (temperature and loading time)

• Stiffness of unbound materials as a 
function of confinement and of stress 
condition

• Reduction in asphalt stiffness caused by 
damage

• Permanent deformation of asphalt layers
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Models calibrated in CalME

• Asphalt stiffness as a function of reduced 
time (temperature and loading time)

• Stiffness of unbound materials as a 
function of confinement and of stress 
condition

• Reduction in asphalt stiffness caused by 
damage

• Permanent deformation of asphalt layers
• Permanent deformation of unbound layers
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Step 1: Pavement response



Final/initial deflection
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Permanent deformation of AC



Permanent deformation in AC (pro rated)
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Permanent deformation at pavement surface
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Average FWD centre deflection Fine mix

y = 0.9861x
R2 = 0.8436
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26 original test sections



WesTrack: Cracking
Cracking % versus CalME damage
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WesTrack: Permanent deformation
CalME deformation and maximum rutting
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Conclusion
• A large change in pavement response was 

observed during the HVS tests
• Most of the large increase in deflection 

happened before any cracking was observed
• The increase in deflection was due to a 

decrease in the moduli of all layers
• Both response and performance were 

reasonably well predicted by CalME
• The next step is calibration against in situ 

pavement sections



Thank you
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