Mæliaðferð til að greina magn kísilryks í sementi

Dr. Kristján Friðrik Alexandersson
Október 2014
Verkefnin var styrkt af Rannsóknasjóði Vegagerðarinnar, ICI Rheocenter og Nýsköpunarmiðstöð Íslands
Efnisyfirlit

1 Ingangur .. 3
2 Undirbúningur á staðalblöndum .. 4
3 Kornafæðargreining ... 5
 3.1 Áberðafæði .. 5
 3.2 Niðurstöður .. 7
4 Öðlisþyngdarmælingar .. 9
 4.1 Áberðafæði .. 9
 4.2 Niðurstöður ... 9
5 Mæling á yfirbordsflatarmáli .. 11
 5.1 Áberðafæði ... 11
 5.2 Niðurstöður ... 11
6 Greining með rafeindasmási ... 12
 6.1 Áberðafæði ... 12
 6.2 Niðurstöður ... 13
7 Innrað litrófsgreining ... 15
 7.1 Áberðafæði .. 15
 7.2 Niðurstöður ... 16
8 Aðrar áberðir .. 19
 8.1 Varmamælingar ... 19
 8.2 Sementsefnagreining ... 19
 8.3 XRD kristalgreining .. 19
9 Val á mæliaðferð og framkvæmdalýsing .. 20
 9.1 Samantekt á mæliaðferðum ... 20
 9.2 Notkun á öðlisþyngdarmælingum til greiningar á kísilryksinnihaldi ... 21
 9.3 Verklýsing .. 22
10 Mælingar á sýnum úr íslenskum byggingarfamkvæmdum .. 23
11 Samatekt .. 24
12 Heimildir .. 25
1 Inngangur

Frá því á áttunda áratugnum hefur kísilryki verið blandað saman við íslenskt sement til að koma í veg fyrir alkalfskemmdir hértilendis. Kísilryk er einn mest gæðaauki sem hægt er að bæta út í steinsteypu en rykið eykur þéttleika, styrk og endingu steypunnar.

Ekki hefur enn verið sént fram á hversu nákvæm blöndun í sementstankbíl er og því er nauðsynleg að geta sent síni af sementi í prófun til að skera úr um nákvæmt magn kísilryks sínisins eftir blöndun. Verkefni þetta var sett í gang til að koma af stað þróun á mæliaðferð sem getur sagt til um og staðfest hversu mikið magn af kísilryki er þeirri sementsblóndu sem afgreidd er.

Til þess að skoða þá möguleika sem eru í boði voru nokkrar mæliaðferðir teknar til atthugunar. Í byrjun verkefnisins voru staðalblóndur tilbúnaðar og þær blóndur notaðar til þess að meta mæliaðferðirnar. Síðan var aðferð valin til þess að mæla síni sem safnað hefur verið á síðasta ári frá framkvæmdum Vegagerðarinnar.
2 Undirbúningur á staðalblöndum

Tófla 1: Uppskriftir á staðalblöndum

<table>
<thead>
<tr>
<th>Sement [g]</th>
<th>Kísilryk [g]</th>
<th>Heild [g]</th>
<th>C_{SF/Cem}</th>
<th>C_{SF/Tot}</th>
<th>Nafn</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000</td>
<td>0</td>
<td>9000</td>
<td>0%</td>
<td>0,00%</td>
<td>0% SF</td>
</tr>
<tr>
<td>9000</td>
<td>180</td>
<td>9180</td>
<td>2%</td>
<td>1,96%</td>
<td>2% SF</td>
</tr>
<tr>
<td>9000</td>
<td>360</td>
<td>9360</td>
<td>4%</td>
<td>3,85%</td>
<td>4% SF</td>
</tr>
<tr>
<td>9000</td>
<td>540</td>
<td>9540</td>
<td>6%</td>
<td>5,66%</td>
<td>6% SF</td>
</tr>
<tr>
<td>9000</td>
<td>720</td>
<td>9720</td>
<td>8%</td>
<td>7,41%</td>
<td>8% SF</td>
</tr>
<tr>
<td>9000</td>
<td>900</td>
<td>9900</td>
<td>10%</td>
<td>9,09%</td>
<td>10% SF</td>
</tr>
</tbody>
</table>

Notað var Aalborg Portland Rapid sement. Sementið er flokkað sem CEM I, sem þýðir að það inniheldur aðeins sementsgjall fyrir utan 5% gips (e. gypsum). Sementið hefur styrkleikaflokkinn 52,5N. Kísilrykið kemur frá Elkem á Grundartanga og er nær eingöngu samansett úr myndlausu SiO₂.

Sement og kísilryk voru vigtuð að næsta 0,1 g og síðan voru efnin kominn fyrir í 20 l tunnu með innbyggðum hrærispaða. Tunnunni var komið fyrir á rúlluborði og efnunum blandað í 2 klukkustundir.

Í töflu 1 sést útreiknað kísilrykshlutfall í blöndunum. C_{SF/Cem} er hlutfall kísilryks af sementsmagni og C_{SF/Tot} er hlutfall kísilryks af heildarbindiefni (sement og kísilryk samanlagt). Til samanburðar má geta að íslenskt Portland sement hafði C_{SF/Tot} = 6% eftir 2003 og íslenskt Kraftsement hafði C_{SF/Tot} = 4%.

Staðalblöndur voru síðan mældar með mismunandi aðferðum og mæliníðurstöður sem fall af C_{SF/Cem} voru greindar.
3 Kornastærðargreining

3.1 Aðferðafraði

Kornastærðargreining er víða notuð í byggingariðnaðinum því að það er æskilegt að vita stærðardreifingu á efnum, hvort sem að þau eru fín (t.d. sement) eða gróf (t.d. grjót í steinsteypu og malbiki). Stærðargreiningin fer fram með mismunandi aðferðum eftir því hvaða stærðargráðu er verið að vinna á. Í þessu verkefni var kornastærðardreifing mælt í Sympatec Helos laser diffractometer mælitæki sem byggir á bylgjubognun lasergeisla (e. laser diffraction). Slík tæki eru einmitt notuð til að greina kornastærðardreifingu féinfna. Mælisvið lasermælitækisins er 0,5-350 μm.

Mynd 1: Sympatec Helos kornastærðardreifingarmælitæki.

Mynd 2 sýnir svo staðlað niðurstöðublað frá svona mælingu. Þar má sjá mynd með tveim ferlum. Blái ferillinn sýnir samtals magn af sýni fyrir neðan ákveðina stærð (Q3). Rauði ferillinn sýnir hversu mikið af sýninu má finna við ákveðinna stærð (q3lg). Þar má einfing sjá stærðir á bôð við x10, sem segir til um hvaða stærð má miða við þegar finna á 10% af efnum.
Mæliðferð til að greina magn kísilryks

Keldnaholt, IS-112 Reykjavik, Iceland

Fylgiblað 2: Particle size distribution and specific surface measurement

<table>
<thead>
<tr>
<th>Doser:</th>
<th>VIBRI</th>
<th>Date/time:</th>
<th>4.8.2014</th>
<th>Sample:</th>
<th>SF 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade:</td>
<td>4 mm</td>
<td>Measuring range:</td>
<td>R4: 0,5/1,8...350µm</td>
<td>Type:</td>
<td></td>
</tr>
<tr>
<td>Pressure:</td>
<td>3,00 bar</td>
<td>Measuring time:</td>
<td>10,00 sek</td>
<td>Origin:</td>
<td></td>
</tr>
<tr>
<td>Vacuum:</td>
<td>10,00 mbar</td>
<td>Cycle time:</td>
<td>1000 ms</td>
<td>Density:</td>
<td>3.06 g/cm³</td>
</tr>
<tr>
<td>Feed rate:</td>
<td>90%</td>
<td>Start / stop at:</td>
<td>2,00% at C.opt</td>
<td>Shape fac.:</td>
<td>1.00</td>
</tr>
<tr>
<td>Revolution:</td>
<td>0,00%</td>
<td>Operator:</td>
<td>EMH</td>
<td>Evaluation:</td>
<td>HRLD (V 3.4 Rel.1)</td>
</tr>
</tbody>
</table>

Volume size distribution:

<table>
<thead>
<tr>
<th>x0/µm</th>
<th>Q3/%</th>
<th>x0/µm</th>
<th>Q3/%</th>
<th>x0/µm</th>
<th>Q3/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>14.71</td>
<td>12.00</td>
<td>55.97</td>
<td>86.00</td>
<td>99.77</td>
</tr>
<tr>
<td>2.20</td>
<td>18.44</td>
<td>15.00</td>
<td>62.40</td>
<td>102.00</td>
<td>99.97</td>
</tr>
<tr>
<td>2.60</td>
<td>21.70</td>
<td>18.00</td>
<td>67.98</td>
<td>122.00</td>
<td>100.00</td>
</tr>
<tr>
<td>3.00</td>
<td>24.56</td>
<td>21.00</td>
<td>72.82</td>
<td>146.00</td>
<td>100.00</td>
</tr>
<tr>
<td>3.60</td>
<td>28.27</td>
<td>25.00</td>
<td>78.19</td>
<td>174.00</td>
<td>100.00</td>
</tr>
<tr>
<td>4.40</td>
<td>32.42</td>
<td>30.00</td>
<td>83.45</td>
<td>206.00</td>
<td>100.00</td>
</tr>
<tr>
<td>5.20</td>
<td>35.92</td>
<td>36.00</td>
<td>88.08</td>
<td>246.00</td>
<td>100.00</td>
</tr>
<tr>
<td>6.20</td>
<td>39.68</td>
<td>42.00</td>
<td>91.39</td>
<td>294.00</td>
<td>100.00</td>
</tr>
<tr>
<td>7.40</td>
<td>43.65</td>
<td>50.00</td>
<td>94.49</td>
<td>350.00</td>
<td>100.00</td>
</tr>
<tr>
<td>8.60</td>
<td>47.22</td>
<td>60.00</td>
<td>97.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>51.05</td>
<td>72.00</td>
<td>98.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific surface (mean of 4): 4771 cm²/g (laser diffraction)

Mynd 2: Staðlað niðurstöðublað fyrir kornastærðargreiningu á fínefnum.
3.2 Niðurstöður

Kornastærðarmælingar voru framkvæmdar á staðablöndunum. Samantekt af niðurstöðunum fyrir Q3 og q3lg má sjá á myndum 3 og 4.

Mynd 3: Samantekt á niðurstöðum fyrir kornastærðargreiningu á staðalblöndum (Q3).

Mynd 4: Samantekt á niðurstöðum fyrir kornastærðargreiningu á staðalblöndum (q3lg).
Mæliaðferð til að greina magn kísilryks

Þeir ferlar sem má finna á myndum 3 og 4 eru mjög svipaðir og ekki er augljós leið til þess að meta kísilryksmagn út frá þeim. Hugsanlegt er hinsvegar að nota stærðirnar x10, x16, x50, x84, x90 og x99 (sjá mynd 2) til þess að betur aðgreina staðalblöndurnar. Niðurstöður fyrir slíka greiningu má sjá á myndum 5 og 6

[Diagram 1]

Mynd 5: x10, x16 og x50 sem fall af kísilryksmagni.

[Diagram 2]

Mynd 6: x84, x90 og x99 sem fall af kísilryksmagni.

Af þessum myndum að dæma er ljóst að aðeins x84 og x90 ferlarnir koma til greina ef að meta á magn kísilryks í ópekktu sýni. Þeir ferlar falla þó ekki vel að línulegu módeli, sem er það módel sem ætti að falla hvað best að þessum gögnum.
4 Eðlisþyngdarmælingar

4.1 Aðferðafráði

Eðlisþyngdarmælingar voru framkvæmdar samkvæmt staðlinum EN 196-6. Mælingin fer þannig fram að vigtuð er sér til gerð flaska full af steinolíu (500 ml) og síðan eru 100 g af efni bætt út í flöskuna (sem ryður frá steinolíu) og flaskan vigtuð aftur. Hver mæling tekur um það bil 10 mínútur en ráðlagt er að endurtaka mælinguna tvisvar til þess að fá marktækari niðurstöðu.

Þar sem sement og kísilryk hafa ekki sömu eðlisþyngd muna mismunandi samsetningar af þessum efnum hafa mismunandi heildareðlisþyngd. Eðlisþyngdir staðalblandnanna voru mældar til þess að skoða áhrif kísilryksviðbotar á eðlisþyngd.

4.2 Niðurstöður

Mynd 7 sýnir mæliniðurstöður úr eðlisþyngdarmælingunum. Framkvæmdar voru þrjár til fimm mælingar á hverju sýni og sýnir myndin meðaltalið úr þeim mælingum. Óvissumörkin sem sjást á myndinni eru staðalfrávik sem reiknast út frá mælingunum.

![Diagram](image)

Mynd 7: Mældar eðlisþyngdir sem fall af kísilryksinnihaldi, ásamt reiknaðri eðlisþyngdar líkani og línulegu líkani mátað að mæðu gögnunum. Övissumörk á mæðu gildunum eru eitt staðalfrávik reiknað út frá mælinggögnum.
Það sést á mynd 7 að óvissan á eðlisþyngdinni eykst með auknu kísilryksinnihaldi. Þetta gefur til kynna að ekki hafi tekist að búa til einsleitar staðalblöndur þannig að hver 100 g skammtur sem notaður er í eðlisþyngdarmælingu hafi kísilryksinnihald sem er hærri eða lægri en innihald heildarblöndunar.

Mynd 7 sýnir einnig útreiknuð eðlisþyngdagildi miðuð við þær forsendur að kísilrykid hafi eðlisþyngdina $\rho_{SF} = 2.20 \text{ g/cm}^3$ og að sementið hafi eðlisþyngdina $\rho_{CEM} = 3.06 \text{ g/cm}^3$. Líkanið er byggt á vigtaðri samlagningu eðlisþyngda og reiknast samkvæmt

$$\rho_H = \frac{\rho_{CEM} + \rho_{SF} C_{SF/Cem}}{1 + C_{SF/Cem}},$$

þar sem ρ_H er heildareðlisþyngd blöndunar. Þetta líkan er allt að því líñulegt á þessu bili þar sem $C_{SF/Cem}<<1$. Það að reiknuðu gildin séu almennt hærri en mældu gildin bendir til þess að annaðhvort eru forsendurnar vitlausar, eða að steinolíán er ekki að ná að almennilega umlykja öll kornin. Ef að steinolíán nær ekki almennilega að umlykja sements- og kísilryksagnirnar, mun loft að einhverju leiti vera partur af mælingunni.

Á mynd 7 má einnig sjá það líñulega líkan sem fellur best að mældu gildunum. Ef að notaætti þetta líkan til að reikna kísilryksinnihald öfekktrar blöndu þyrfti helst að hafa með í reikningnum óvissuþátt sem endurspeglar óvissuna í mælingunum á sýnum með herra kísilryksmagni.
5 Mæling á yfirborðsflatarmáli

5.1 Aðferðafraði

Reikna má yfirborðsflatarmál á massaeiningu út frá

$$S_M = S_V / \rho,$$

Þar sem $$S_V$$ er flatarmál á rúmmálseiningu sem er stærð sem fengin er í kornastærðargreiningunni og $$\rho$$ er eðlisþyngd efnisins (sjá kafla 4).

5.2 Niðurstöður

Mynd 8: Yfirborðsflatarmál á rúmmálseiningu og massaeiningu sem fall af kísilryksinnihald í staðalblöndum.
6 Greining með rafeindasmásjá

6.1 Aðferðafraði

Notkun á rafeindasmásjá (e. scannig electron microscope) til þess að greina kísilryksmagn í sementi var rannsókuð í verkefninu. Tækið er í eigu Nýskópunarmiðstöð Íslands. Hægt er að framkvæma magnbundina frumefnagreiningu með tækinu. Mælingin fer fram á mjög afmörkuðu sveði sýnisins.

Rafeindasmásjágreining hefur verið mikið notuð í rannsóknum á sementsbundinum efnum en þó oftast í þeim tilgangi að greina örsmæðaruppbyggingu sementsfasa og fasaskilin milli sementsfju og fylliefna, oft sem fall af tíma [1, 8]. Hinsvegar var einungis stuðst við frumefnagreiningu í þessu verkefni og þá sérstaklega greiningu með tilliti til oxíð innihalda.

Mynd 9 sýnir niðurstöður fyrir 10% SF kísilryksblönduna sem dæmi.
6.2 Niðurstöður

Til þess að meta magn kísilryks í staðalblöndunum er eðlilegast að greina magn SiO$_2$ og bera saman innihald. Einnig er áhugavert að skoða að auki ál-, brennisteins- og kalsúmoxió innihald. Þessi fjögor efni eru þau efni sem mest er af í sýnunum. Brennisteinsoxiðin koma til vegna þess að gips er sett út í venjulegt Portland sement. Niðurstöður fyrir þessi fjögor efni má sjá á mynd 10. Það er vert að taka fram að í þessari oxið greiningu er notast við niðurstöður úr frumefnagreiningu og reiknað út frá algengstu samsetningu oxið sambandanna.

Mynd 10: Oxíða innihald staðalblandnanna skv. SEM frumefnagreiningu.
Mæliaðferð til að greina magn kísírýks

Mynd 11: Greining á kalsíum oxíðs innihaldi staðablandnanna með SEM.

\[y = -0.3622x + 68.509 \]
\[R^2 = 0.657 \]

Mynd 12: Greining á kíslíðóxíðs innihaldi staðablandnanna með SEM.

\[y = 0.3823x + 16.381 \]
\[R^2 = 0.6846 \]
7 Innrauð litrófsgreining

7.1 Aðferðafræði

Fourier Transform Infrared (FT-IR) litrófsgreining er víða notuð í greiningum á IR virkum efnum, bæði til magngreininga og annarskonar greininga, til dæmis greiningu á óþekktum sýnum. Innrauðu ljós er skotið á sýnið og mismunandi titringstegundir í efninu gleypa í sig ljós sem hefur sömu orku og orkubilið á milli grunntitringsástands og fyrsta örvaða ástands. Því er oft um að ræða gleypniróf þegar talað er um IR greiningu [4, 5, 3, 8].

Á mynd 13 má sjá gleypniróf fyrir hreint sement. Merkt inn á rófið eru einkennandi „toppar“ fyrir SiO₂, samkvæmt heimildum. Markmið með því að IR greina staðalblöndurnar er að sjá mismunandi stóra SiO₂ toppa í sýnunum og þær upplýsingar mætti svo nota til að kvarða mælingu á SiO₂ í óþekktu sýni.

IR mælingar fóru fram hjá Efnagreiningarsetri Háskóla Íslands og voru þær framkvæmdar af Dr. Sigríði Jónsdóttur. Staðalsýnin voru blönduð í KBr salt í hlutfallinu 1:50 (sýni:salt) og voru róf mæld milli 4000 cm⁻¹ og 400 cm⁻¹ með 2 cm⁻¹ upplausn. Bakgrunnsróf voru mæld og dregin frá mælingum á sýnum.

Mynd 13: Gleypniróf á hreinu sementi
7.2 Niðurstöður

Mynd 14 sýnir IR róf fyrir staðalblöndurnar. Því miður fengust ekki gögn fyrir 10% kísilryksblönduna. Hér sést að nauðsynlegt er að leiðrétta núllpuntin í rófunum. Þetta er gert með því stilla gleypni við 1300 cm\(^{-1}\) í 0. Þetta má sjá á mynd 15.

Mynd 14: Gleypniróf fyrir staðalblöndur (engar lagfæringar).

Mynd 15: Gleypniróf fyrir staðalblöndur (leiðrétting á núllpunktum).
Ekki er þó hægt að nota rófin eins og þau eru á mynd 15 þar sem stærðir á gleypnittoppum þar eru í engu samræmi. Það reynist því nauðsynleg að skala rófin til þess að það sé möguleiki á því að nota þau í innbirgðs samanburði. Til þess að gera það þarf að velja einkennandi svæði á rófunum sem er ekki háð SiO₂ innihaldi. Margir möguleikar voru skoðaðir en flata svæðið við 4000 cm⁻¹ reyndist vera besti kosturinn. Allar blöndurnar haga sér svipað á þessu svæði og einkennandi toppar fyrir SiO₂ eru hvergi nálægt (sjá mynd 13). Óessa skölun má sjá á mynd 16.

Mynd 16: Gleypniróf fyrir staðalblöndur (leiðrétting á núlpunktum og skölun).

Mynd 16 gæti nýst áfram í ákvörðun á kísilryksmagni í sementsblöndu. Topparnir við rúmlega 1100 cm⁻¹ sýna mesta gleypni fyrir 8% kísilryksblönduna síðan minnka topparnir eftir því sem kísilryks magn minnkar.

Mynd 17: Gleypniróf fyrir staðalblöndur (leiðrétting á núlpunktum og skölun), í nán við 1100 cm⁻¹.
Þessa toppa má sjá á mynd 17. Ef við heildum yfir gleypnigildin frá 1100 cm\(^{-1}\) til 1150 cm\(^{-1}\), fáum við niðurstöður sem má sjá á mynd 18.

Mynd 18: Flatarmál toppa við 1100 cm\(^{-1}\) sem fall af kísíryksmagi í staðalblöndum.

Hugsanlegt er að nota megi sambandið sem sýnt er á mynd 18 til að ákvarða kísíryksmagi í ópekktu sýni. Hinsvegar er meðhöndlun gagna (t.d. val á sköulanaraðferð) þannig að aðferðin er ekki raunhæf, þar sem ekki er mögulegt að hanna staðlað ferli. Einnig er vert að benda á að topparnir við 900 cm\(^{-1}\) og 500 cm\(^{-1}\), sem eru líka einkennandi toppar fyrir SiO\(_2\), sýna ekki þannig hegðun að mögulegt er að nota þá á svipaðan hátt. Því er möguleiki að það sé tilviljun ein að topparnir við 1100 cm\(^{-1}\) gefi línulegt samband.
8 Aðrar aðferðir

Aðrar aðferðir komu til greina í þessu verkefni og verða þær og mögulegur fýsileiki þeirra til magngreiningar ræddur hér í þessum kafla.

8.1 Varmamælingar

Það stoð til að framkvæma hálftóvermnar varmamælingar í verkefni en sökum langvarandi bilunar á tækjabúaði Nýsköpunarmiðstöðvar Íslands, varð sú mæling ekki að veruleika. Hægt hefði verið að greina varmaferla staðalblandnanna á svipaðan hátt og var gert fyrir FT-IT mælingarnar til að ákvarða línulegt samband sem hægt hefði verið að nota til að meta óþekkt sýni út frá. Blöndur með herra kíslirykssinnihald hefðu látíð í té minni varma í vötnunarefnahvörfunum sem eiga sér stað fyrsta sólarhringinn og hefði greiningarvinnan farið fram með það í huga [2, 6]. Varmamælingar eru hinsvegar tímafrekar því að hvert sýni þarf allt að því sólarhring til að fá allar þær upplýsingar sem nauðsynlegar eru. Því má segja að varmamælingar séu tímafrekasta leiðin sem hægt hefði verið ekki verið flókin.

8.2 Sementsefnagreining

Til er stöðluð aðferð, ASTM C114, til að magngreina SiO₂ í sementi. Þessi aðferð er oftast kölluð sementsefnagreining. Hún var einu sinni framkvæmd á Rannsóknarstofu byggingariðnarins en það eru mörg ár síðan. Í dag eru sýni sent erlendis þegar framkvæma þarf þessa greiningu.

Þessi aðferð mundi skila af sér mjög gagnlegum niðurstöðum hvað þetta verkefni varðar. Hinsvegar er aðferðin mjög tímafrek og krefst búnaðar sem ekki er lengur aðgengilegur á Nýsköpunarmiðstöð þessum kafla. Því var hún ekki notuð í þessu verkefni.

8.3 XRD kristalgreining

X-ray diffraction (XRD) kristalgreining er víða notuð til að greina steindir og annarskonar kristölluð efni. Til dæmis hefur hún verið notuð til að framkvæma magngreiningar í tengslum við vötnun á sementsbundnum efnum [7]. Ekki reyndist mögulegt að framkvæma XRD mælingar í þessu verkefni.
9 Val á mæliaðferð og framkvæmdaldalýsing

9.1 Samantekt á mæliaðferðum

Tilgangur verkefnisins er að finna aðferð sem getur nýst þeim sem bera ábyrgð á því að rétt efni séu notuð í mannvirkjagerð. Aðferðin ætti að vera raunhæf leið til þess geta framkvæmt eftirlið á sementskísilryksblöndum.

Kornstærðargreining er fljót í framkvæmd og styðjast mætti við x10 mælinguna til þess að meta magn kísilryks. Mynd 19 sýnir að mælingin á 10% SF blöndunni er ekki í samræmi við hinar blöndurnar og eins og sást í öðrum aðferðum, virðist vera meiri óvissa í mælingum á blöndum með hátt kísilryksinnihald. Þessi óvissa stafar líklegast af ófullnægjandi dreifingu á kísilrykinu. Þar sem að aðeins gram af efni er notað í kornstærðargreininguna er aðferðin almennnt séð viðkvæm fyrir hversu vel kísilrykið er blandað við sementið. Annar ókostur við þessa aðferð er að hún krefst búnaðar sem er ekki viða aðgengilegur utan hofudbægarsvæðisins. Greining á yfirborðsflatarmáli með sama búnaði er ekki vænleg leið til að meta kísilryksinnihald, eins og sjá má í kafla 5.

Mynd 19: x10 mælt í kornstærðargreiningu sem fall af kísilryksmagni.

Greining á efnissamsetningu með rafeindasmásjá er fýsilegur kostur til þess að meta kísilryksinnihald. Hægt er að styðjast við CaO innihald eða SiO₂ innihald. Það eru hinsvegar tveir ókostir við þessa aðferð. Hún er mjög viðkvæm fyrir blöndun þar sem rafeindasmásjáin greinir aðeins samsetningu í einum punkti. Einnig er almenn aðgengi að rafeindasmásjá takmörkuð og nauðsynlegt er að fá sérfræðing til að framkvæma greininguna.

Notkun á innraðri litrófsgreiningu í þessum tilgangi eru vissulega áhugaverð en ljóst er, út frá þessari rannsókn, að sú aðferð er ekki praktísk. Gagnavinnslan er tímafrek og aðferðin er viðkvæm fyrir einsleitni sýnisins þar sem innan við gram er notað í mælingunni. Einnig er
mjög erfitt að kvarða aðferðina. IR greining er einnig þekkt fyrir að vera óhentug í magnbundnar greiningar.

Það að eðlisþyngdarmælingin notar 100 g af efni í hverja mælingu er mikill kostur þar sem það dregur úr óvissu sem getur orsakast af lélegri blöndun. Aðferðin er fljóttleg og framkvæma má mælinguna með vigt, rétti flösku og steinolín. Mynd 7 sýnir að eðlisþyngdarmælingar falla vel að línulegu líkani. Eðlisþyngdarmælingar eru því besti kosturinn til að greina kísilryksinnihald sementsblöndu af þeim aðferðum sem athugaðar voru í þessu verkefni.

9.2 Notkun á eðlisþyngdarmælingum til greiningar á kísilryksinnihaldi

Það liggur beint við að nota línulega sambandið á mynd 7 til þess að áætla kísilryksmagn út frá mældri eðlisþyngd. \(C_{SF/Cem} \) mætti þá reikna samkvæmt:

\[
C_{SF/Cem} = \frac{3,0557 - \rho_H}{0,0112} \tag{2}
\]

Gallinn við að nota þessa nálgun er að hún er bundin við eðlisþyngd og aðra eignileika þess sements og kísilryks sem notuð voru í staðalblöndunum. Þetta takmarkar því notagildið á þessu línulega líkani þar sem ekki eru alltaf sömu efni notuð. Vissulega væri hægt að vinna frekar með þessa nálgun en betra er að vinna útfrá samlagningarlíkani sem sett fram er í jöfnu 1.

\[
C_{SF/Cem} = \kappa \frac{\rho_{CEM} - \rho_H}{\rho_H - \rho_{SF}} \tag{3}
\]

þar sem stuðullinn \(\kappa \) er notaður til að leiðréta fyrir mun á reiknaðri eðlisþyngd og mældri eðlisþyngd. Þetta leiðrétta líkan má sjá á mynd 20. Aðfallsgreining leiðir svo í ljós að \(\kappa = 0,58 \). Með þessu líkani er því hægt að reikna kísilryksinnihald út frá mældri eðlisþyngd, eðlisþyngd sements, eðlisþyngd kísilryks og leiðréttingarstuðli.

Út frá mynd 7 má sjá að efri óvissumörk mælinganna (sem voru ± 1 staðalfrávik) skarast vel við óleiðrétta samlagningarlíkanið og út frá því má gefa sér að óvissan reiknist samkvæmt

\[
\Delta C_{SF/Cem} = (1 - \kappa) \frac{\rho_{CEM} - \rho_H}{\rho_H - \rho_{SF}} \tag{4}
\]

Þessi óvissumörk eru afleiðing af þeirri óvissu sem kemur fram í mælingum á blöndum með háu kísilryksinnihaldi. Ef að margar eðlisþyngdarmælingar eru framkvæmdar með lágu
staðalfrávik má færa rök fyrir minni óvissu en þá þarf líka að endurskoða leiðréttingarstuðulinn.

Mynd 20: Samlagningarlíkön og mældar eðlisþyngdir.

9.3 Verklýsing

Mæla skal eðlisþyngd hverjar kísilrykssementsblöndu minnst þrisvar sinum samkvæmt EN 196-6 staðlinum. Nota skal minnst 100 g af efni í hvert sinn. Reikna skal meðaltals ρ_H. Nauðsynlegt er að staðfesta eðlisþyngd sementsins ρ_{CEM} þar sem uppgefið gildi framleiðanda er aðeins viðmiðunargildi og fyrir þessa framkvæmd er nauðsynlegt að hafa rétt gildi. Einnig skal sannreyna eðlisþyngd kísilryksins sem notað var í blönduna.

Reikna skal svo kísilryksinnihald samkvæmt:

$$C_{SF/Cem} = 0.58 \cdot \frac{\rho_{CEM} - \rho_H}{\rho_H - \rho_{SF}}$$ (5)

Óvissa reiknast samkvæmt:

$$\Delta C_{SF/Cem} = 0.42 \cdot \frac{\rho_{CEM} - \rho_H}{\rho_H - \rho_{SF}}$$ (6)
10 Mælingar á sýnum úr íslenskum byggingarframkvæmdum

Safnað var nokkrum sýnum af kísilryksblönduðu sementi á tímaðinnu 2012-2014. Sýnin voru frá mismunandi framkvæmdum Vegagerðarinnar við Borgarfjarðarbrú. Blandan sem notuð var í þessum brúardekkstéypum á að hafa kísilryksinnihaldid C_{SF/Tot} = 8% (C_{SF/Cem} = 8,7%). Blandan var keypt af Aalborg Portland og inniheldur Rapid sement, það sama og var notað í staðalblöndurnar í þessari rannsókn. Mynd 21 sýnir niðurstöður fyrir kísilryksinnihald þessara blandna.

Mynd 21: Kísilryksinnihald sementsblandna notaðar í framkvæmdir á brúardekk við Borgarfjarðarbrú. Rauða línan gefur til kynna magnið sem pantað var.

Af þessum niðurstöðum að dæma var kísilryksinnihald blandnanna í samræmi við pöntun, miðað við óvissumörk mæliaðferðarinnar.
11 Samatekt

Í þessu verkefni voru ýmsar áhugaverðar aðferðir til mæla kísilryksinnihald sementsblöndu kannadar. Af þeim reyndist eðlisþyngdarmæling vænlegust hvað nákvæmni, tíma og kostnað varðar. Lýkan var smíðað til að geta greint gögnin, síðan var aðfallsgreining notuð til ákvarða leiðréttingarstuðul. Út frá þessu líkani var verklýsing dregin upp. Síðan voru óþekkt síni greind með eðlisþyngdarmælingum samkvæmt þessu ferli.

Aðferðin sem sett er fram í þessu verkefni er einföld og gefur, að það virðist, ásættanlegar niðurstöður. Það virðist sem að það sé töluerð óvissu fólgan í mælingum á blöndum með meira en 6% kísilryk innihald. Þetta skilar sér í stóru óvissubili í þessum mælingum. Hægt er þó að fá nokkuð góð gildi með því að endurtaka eðlisþyngdarmælingarnar nokkrum sinum fyrir hvert síni.

Mælingar frá nokkrum framkvæmdum Vegagerðarinnar gáfu til kynna að rétt hafi verið blandað í tankbíl í þeim skiptum sem að mælingar fóru fram.
12 Heimildir

