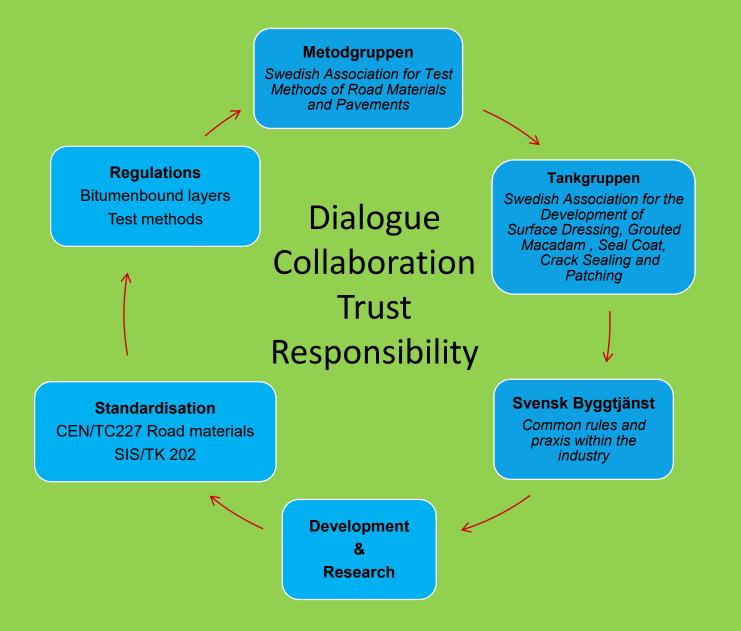


Common praxis and experiences of bitumen bound surface layers - Swedish Transport Administration -

IRCA Conference Bundin slitlög - betri vegir 14th September 2021

> Kenneth Lind Swedish Transport Administration


TRAFIKVERKET

Kenneth Lind, Senior specialist Asphalt & pavements / Road technology

Swedish Transport Administration Investments Technology, Environment & Land negotiation

Phone: +46 10 123 14 85 Email: <u>kenneth.lind@trafikverket.se</u>

Disposition

- bitumenbound surface layers
- choice of surface layer
- quality-critical factors and failures

TRAFIKVERKET

- performance requirements
- conclusions

Two main types of bitumenbound surface layers

Surface dressing

Surface layer of asphalt

Tank coatings

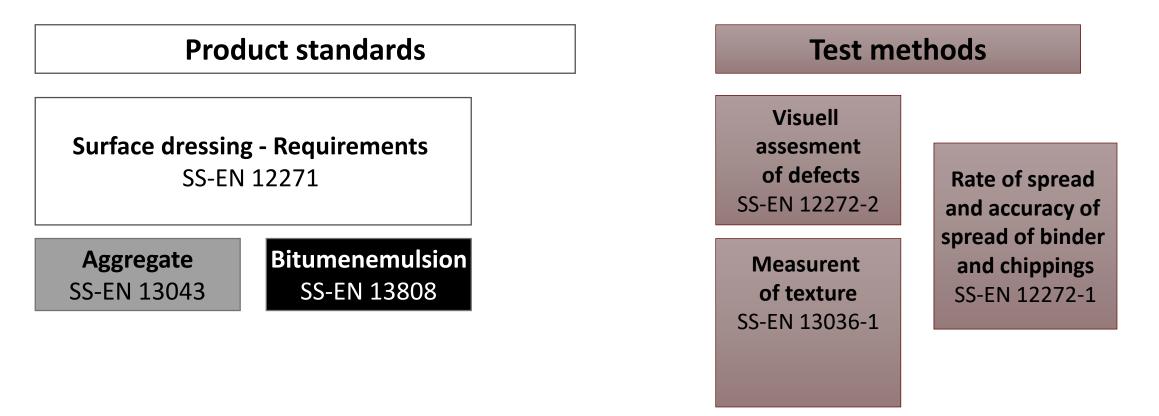
Resource-efficient technology for the low-traffic road network

Single surface dressing, Y1B (ÅDTt < 2500)

ÅDTt = total traffic flow in both directions Grouted macadam, IMT(ÅDTt < 1000)

Y1B 8/11 = 14 kg aggregate + 1,7 kg bitumen per m^2

Methods for maintenance


- ✓ Relatively low need of binder and aggregate
- ✓ Use of local materials
- ✓ No heating of aggregate is needed
- ✓ High laying capacity (Appr. 100 000 m^2 per shift)

40 mm IMT 8/22 = 74 kg aggregate + 3,6 kg bitumen per m²

- Energy consumtion Tank coatings: 1–4 kWh/m²
- Energy consumtion asphalt pavement: 6-12 kWh/m²
- Lifetime tank coating: Appr. 20 year in optimal conditions

Implemented EN-standards for surface dressing

There is no harmonised product standard for grouted macadam and therefore no requirements for CEmarking. However, CE-marking is required on the consituent materials such as aggregate and binder.

7

Correct embedding of aggregate is important

TRAFIKVERKET

• No embedding

• Normal embedding

• Total embedding

Visual assessment of defects SS-EN 12272-2

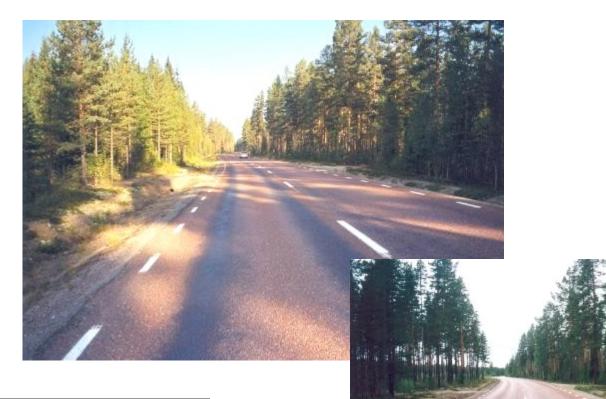
Fatting up

TRAFIKVERKET

- Fatting up is the result of total embedding
- the macro texture and thereby the friction is reduced
- the wet friction can be very low (0.3)
- can occur if the maximum stone size is too small in relation to the prevailing traffic and the hardness of the surface

Bleeding

- The binder rises to the surface through the mosaic of stone particles
- common when using low-viscosity, fluxed binders, with too high binder yield and with a binder-rich substrate
- the macrotexture is markedly reduced, whereby friction becomes poor
- on bleeding surface treatment, the friction is 0.3
- the macro texture (MTD) is below 0.5 mm
- bleeding occurs mainly during heat waves in the summer



Tracking

TRAFIKVERKET

- Caused by track-bound traffic
- normally disappears after the first or second winter's studded tire traffic
- tracking reduces macro texture and friction but not normally to critical levels
- common on roads with a high proportion of heavy traffic

Tracking is normally positive for the life of the surface treatment and should not be confused with bleeding

Scabbing and tearing

- Concentrated local loss of aggregate particles from the mosaic or extensive thinning over a continuous surface greater than 0.01 m²
- can occur in places with high traffic loads (eg on exit roads as in this case) and as a result of snow and ice removal
- larger loops reduce macro texture
 and friction

TRAFIKVERKET

Fretting

- Random stone removal from the mosaic on a laid surface treatment
- occurs mainly where the amount of binder is insufficient or if the surface treatment has not had time to stabilize before winter
- small-scale random stone loosening, which does not affect the homogeneity of the mosaic, is not considered to be fretting
- wet and dirty aggregate is often a contributing cause of fretting

13

13

14

Streaking

TRAFIKVERKET

- Loss of stone particles from a laid surface dressing so that one or more lines occur in the design direction of the surface treatment
- Caused by uneven distribution of binder in the spreading ramp or insufficient overlap of binder in longitudinal joints

Mechanical damage Plow damage

- Plowing and tearing can cause fretting and peeling
- affected by frostbite and freezing
- occurs mainly during the first winter and mainly on the road next to the wheel tracks.

Mechanical damage Wear and tear of studded tires

- Surface dressings can be worn in the wheel tracks due to wear and tear from studded tire traffic
- Too poor wear resistance of the gravel causes premature wear (high ball mill value)
- Worn surface treatment is not "defective" and should therefore not be classified or confused with loops or fretting

16

Requirements and specifications Bitumenbundna lager, TDOK 2013:0529

Specifikation	er för ingå	ende balla	st till ytb	ehandli	ng	
Kornstorleksförd	elning					
Sortering	4/8	8/11	11/16	4/16	8/16	0-16
Kornstorlek D/d	Go85/15	Go85/15	G::85/15	Gc85/15	Gc85/15	G485
Finmaterialhait	fı	fı	fı	f2	f2	-
Sikt (mm)	Andel pas	serande i vikt-%,	min-max			
31,5	-	-	100	100	100	-
22,4	-	100	98-100	98-100	98-100	98-10
16	100	98-100	85-99	85-99	85-99	85-95
11,2	98-100	85-99	0-15	-		70-89
В	85-99	0-15	-	-	0-15	-
5,6	-	-	0-2			-
4	0-15	0-2		0-15	0-2	
2	0-2			0-2		-
0,5	0-1	0-1	0-1	0-2	0-2	8-18
0,063	0-1	0-1	0-1	0-2	0-2	2-5

Krav tillåtna defekter

Typ av ytbehandling	Y1G		Y1B		Y2B
ÂDT _k	< 500	< 500	501 - 1000	> 1000	> 1000
P1 Uppfettning och blödning, %	≤ 1,0	≤ 0,5	≤ 0,5	≤ 0,5	≤ 0,5
P2 Avskalning och släppor, %	≤ 0,5	≤ 0,2	≤ 0,2	≤ 0,2	≤ 0,2
P3 Utglesning, %	≤6	≤ 3	≤ 3	≤ 3	≤ 3
P4 Randning, m	≤ 10	≤2	≤2	≤2	≤2

Specifikationer för bärlager av indränkt makadam, IM

Tabell 8.1.4-1 Kornstorleksfördelning

Sortering	TM 40 8/22 8/22	IM 40 1622 1622	EM 60 16/32 16/22	EM 60 16/32 16/32
Konstorlek	$G_{0}(0) 15$	C ₁ 90-20	$G_{0}90'20$	G ₆ 50/15
Furnisterialitali	5	t:	5	\$
Sütum		Andel passerande	i viki-ši, min-mat	
63	-	-	-	100
-15	100	100	100	\$8 100
31,5	98-100	98-100	98-100	90-99
22,4	90-09	90-99	90-99	-
16	25-50	0-20	0-20	0-15
11,2	-	-	-	-
8	0-15	0-5	0-5	(6-5
4	0-5		-	-
2			-	-
0.063	0.2	0.2	0.2	0.2

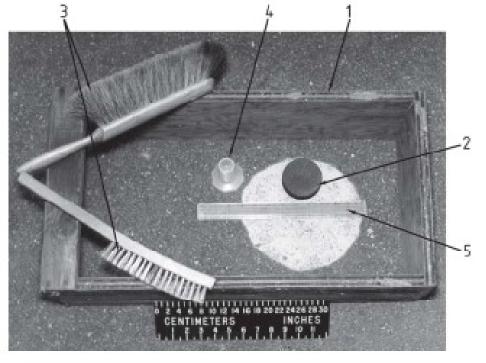
	ÅDT	t<1000
Antal tunga fordon, totalt 1)	≤ 50	51 - 100
ADTktong	≤ 50	51 - 100
Egenskaper		
Flisighetsindex, FI	≤ 20	≤ 20
Krossytegrad, C, kategori	Csato	$C_{50(10)}$
Micro-Devalvärde, M _{DE}	≤ 15	≤15
Los Angelesvärde, LA	≤ 3 0	≤ 25

Krav på egenskaper ingående ballast till slitlager av Y1B

Foondrapor	ÂDT _{k, jost}			
Egenskaper	≤ 500	501 - 1000	1001 -	
Flisighetsindex, FI < 8 mm	≤ 25	≤ 25	≤ 25	
Flisighetsindex, FI > 8 mm	≤ 20	≤ 20	≤ 20	
Krossytegrad, C, kategori	C 50/30	C50/30	C50/30	
Kulkvarnsvärde, A _N	≤ 14	≤ 10	≤ 7	
Los Angelesvärde, LA	≤ 30	≤ 25	≤ 20	

Volumetric measurement of Macro texture (MTD = Mean Texture Depth)

SVENSK STANDARD SS-EN 13036-1:2010

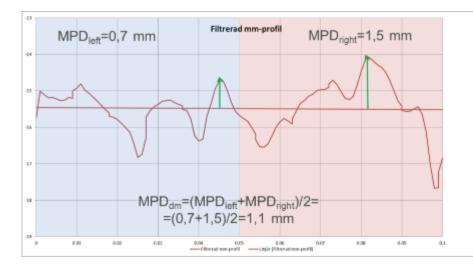

Fastställd/Approved: 2010-06-07 Publicerad/Published: 2010-11-17 Utgåva/Edition: 2 Språk/Language: engelska/English ICS: 17.040.20; 93.080.10; 93.120

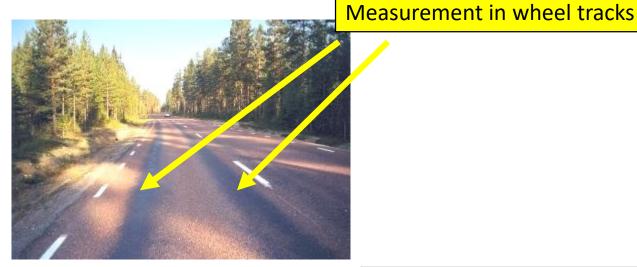
Ytegenskaper för vägar och flygfält – Provningsmetoder – Del 1: Mätning av makrotexturens djup hos en beläggningsyta medelst en volymetrisk metod

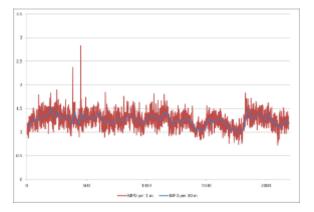
Road and airfield surface characteristics – Test methods – Part 1: Measurement of pavement surface macrotexture depth using a volumetric patch technique

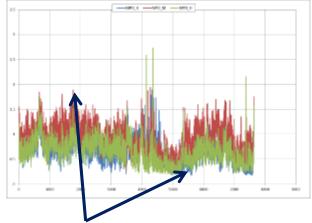
Key

- portable wind screen
- 2 spreading tool
- 3 surface cleaning brushes
- 4 sample cylinder
- 5 ruler

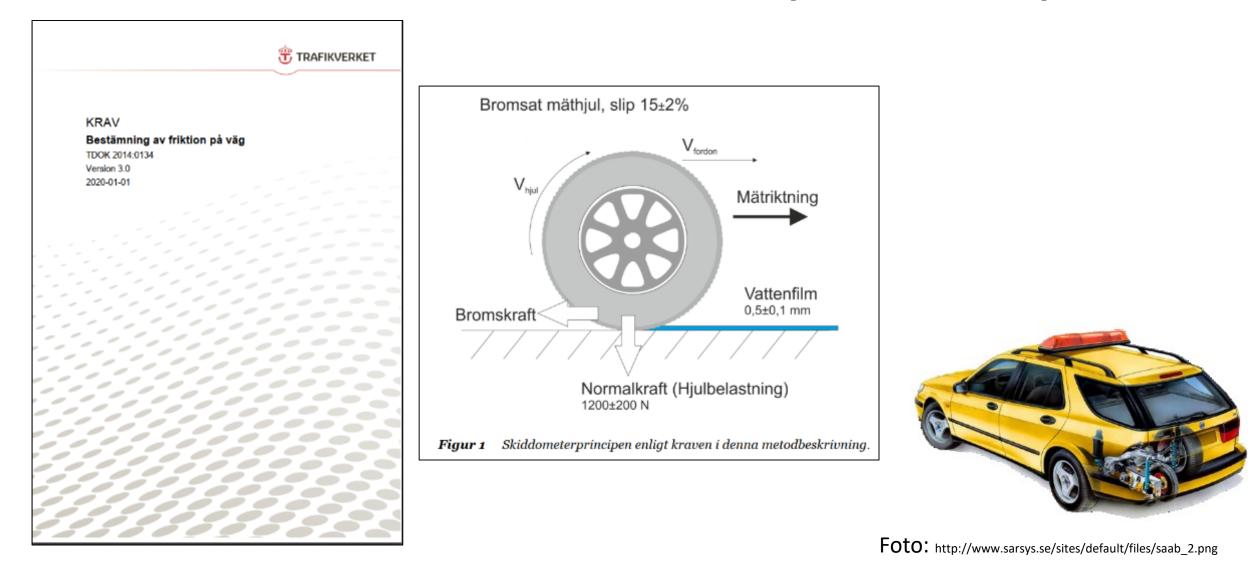

Figure 1 — Apparatus for measuring surface macrotexture depth




Lasermeasurement of Macro texture (MPD = Mean Profile Depth)



ISO 13473-1



Low and **high** MPD-values = risk values

Measurement of friction (wetfriction)

Different types of asphalt

"Hot"/ warm cmix asphalt	Semi-warm asphalt	"Cold" asphalt
> 120 °C	> 50 - 120 °C	< 50 °C
Hard binder	Soft bitumen	Bitumenemulsion
50/70 – 160/220	V 6000 – V 12000	Hard or soft base bitumen
Stable, stiff Medium- & high-traffic roads	Flexible, self-healing Low-traffic roads	Energy-efficient "Low-traffic roads"
ABT, ABS, ABD, AG, ABb Gjutasfalt (PGJA)	MJAG, MJOG	AGBE (Base coarse)
Harmonised	Harmonised	Product standard
product standards	product standards	EN 13108-31
CE-marking	CE-marking	Not harmonised

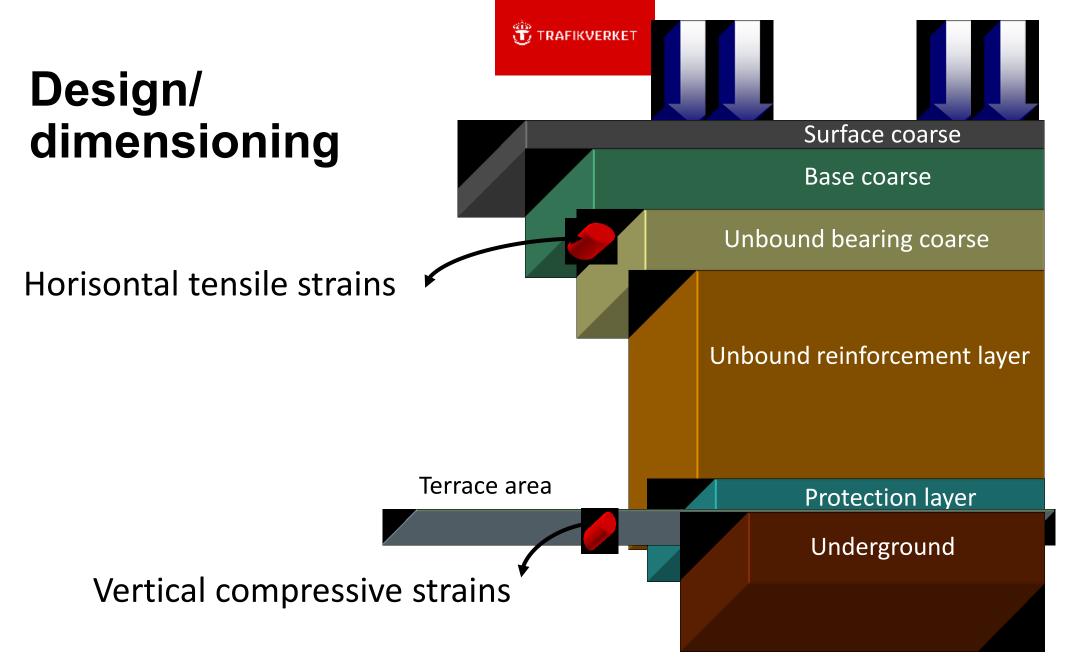
1)

Implemented EN-standards for asphalt

Product standards bituminous mixtures

Asphalt concrete	SS-EN 13108-1 > ABT, ABb, AG
Soft asphalt	SS-EN 13108-3 > MJAG, MJOG
Split mastic asphalt	SS-EN 13108-5 > ABS
Mastic asphalt	SS-EN 13108-6 > PGJA
Porous asphalt	SS-EN 13108-7 > ABD

Standards for demonstration of conformity


Type Test	SS-EN 13108-20
Factory Production Control	SS-EN 13108-21
Reclaimed asphalt	SS-EN 13108-8 (Declaration

Choice of asphalt pavement and requirements for optimized resistance to deformation

Rutting caused by heavy trafik

Choice of surface layer and requirements for optimized resistance to abrasion

Rutting caused by abrasion from studded tyres

Calculation of traffic with respect to abrasion

For constructive design of bituminous surface layers, the adjusted current ÅDTk value, ÅDTk, just is used, ie year-round traffic per lane, multiplied by adjustment factors for:

- traffic share with studded tires (DD)
- signposted speed (SH)
- road width / lane width (KF)
- type of winter road maintenance (VH)

The adjusted ÅDTk value ÅDTk, just is used when choosing the type of surface layer and aggregate

 $ÅDT_{k,just}$ $= \mathring{A}DT_k \cdot J_{DD} \cdot J_{SH} \cdot J_{KF} \cdot J_{VH}$

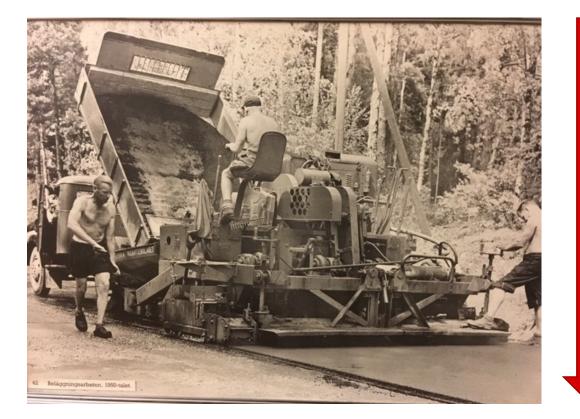
Quality-critical factors for asphalt

- Binder content
- Grading
- Void content (Marshall)
- Temperature
- Aggregate properties
- Bitumen properties
- Properties for reclaim asphalt
- Properties for additives

Quality-critical factors asphalt pavement

- Friction
- Longitudinal roughness
 - IRI
 - Megatexture
- Transversal irregularities
 - Rut depth
- Thickness
- Void content

Quality-critical performance requirements


- Underlay
 - Temperature
 - Bearing resistance
 - Eveness
 - Cleaning
- Tack coating (gluing)
- Compaction
- Execution of work joints for surface layers and trafficed layers of base-, binder- or adjustment coarses

AMA Anläggning = Common praxis DCC BITUMENBOUND LAYERS FOR ROAD, AREAS...

Execution of pavements of asphalt

Underlayer
Tack coating
Transport
Laying
Execution of work joints
Compaction and finishing work
Sealing of work joints

General requirement for final pavements Covers all types of surface layers

- performed pavement must be homogeneous
- if the friction is judged to be insufficient after the compaction and finishingwork king has been carried out, friction-increasing measures must be carried out immediately

Homogenous pavement

General requirement for final pavements

- This pavement does does not meet the basic requirement of AMA
- it seems as if continuous delivery of an inhomogeneous pavement took place without any action being taken?
- both the client and contractor have a responsibility to report errors that are discovered during the execution phase
- the contractor must document and take action

General requirement for final pavements

- Should warning signs be up here?
- sanding, water blasting, fine milling, etc. are seen as "acute / temporary measures" to restore friction
- the final decision on whether or not the pavement can be approved is not only friction measurement but also by directional sampling (void content, binder content, texture measurement....)

Inhomogenous pavement

General requirement for final pavements Conclusions

- In extreme cases, it can differ over 1% in binder content in bleeding compared to binder content in ruts. Risk of poor durability in wheel tracks.
- binders are a big cost is it reasonable to remove binders that would actually have been needed elsewhere in the pavement with water blasting / milling?
- attack the problem from the right direction not by increasing the number of friction measuring vehicles - but make sure to reduce the proportion of surfaces that pose a risk of poor friction
- until the final inspection, the contractor is responsible for monitoring the pavement performed.

Dare to be a professional client and contractor

