Technique and economic possibilities of the reuse of quarry wastes as crushed stones in a wide mining basin in the Alps: an application of the Environmentally Adjusted Cost Benefit Analysis

BY M. BOTTERO¹, F. BURDISSO², G.A. DINO¹, M. FORNARO³, G. MONDINI²

¹ DIGET – Polytechnic of Turin - C.so Duca degli Abruzzi, 24 – 10129 Turin (Italy)
² Mondovì – CN – (Italy)
³ DEPARTMENT OF EARTH SCIENCES –University of Turin – Via Valperga Caluso 35, 10125 Turin (Italy)

1. INTRODUCTION
The industry, connected to the natural stone quarries, represents a very important mining area in Italy. However the difficult morphologic conditions, which are one of the main character of Alps, are a handicap for the management of big quantities of mineral wastes (and most of all spoil rock strip). There are many possibilities for a reuse of mineral wastes: not only the employment of rip-rap (which have been using for several years in the river rehabilitation), but also as prill for building industry. This second chance is necessary not only to improve the economic and environmental balance in mining activities, but also to have considerable volumes of good qualities crushed stones. Basing on the example of the operations done in North - Eastern Alps with local stone wastes (porphyry wastes), also in Piedmont, in the North - Western Alps (Coltian Alps), some consortia concerns are trying to reuse systematically the local quarry wastes (gneiss wastes). In fact there are many requires, for that kind of material, to realize lots of the works which have to be built before the opening of 2006 Olympic Games in Turin.

2. THE STUDY CARRIED OUT
The paper outlines a peculiar situation, for quarry industries, in the North - Western Alps (Luserna S. Giovanni Basin). It also reports the results of a Cost-Benefit Analysis which shows the advantages connected to the use of a consortia plant for the quarry wastes treatment and the contextual increase of value of lithoid wastes in applied fields.

From the studies carried out, a few alternatives for re-using the quarry wastes have been valuated. These possibilities concern:

- The production of aggregates for concretes;
- The production of prill for ballast, filling, etc.;
- The application on road surfaces or sub floor layer for constructions;
- The applications in the binder industry.

The work method used for evaluating the feasibility of these alternatives is based on:

- **Chip sampling** of the quarry wastes,
- **Ore reduction tests** with different kind of machines,
- Execution of **quality tests** on the ore reduction products obtained.

It is necessary to classify the ore reduction products, with reference to the anticipated uses, on the bases of specific regulations. The references have been the national regulation, for re-using the quarry wastes both as aggregates for concretes and employed in the road field, and the specific technical regulations of the National Railway to classify the aggregates for railway ballast.

After having verified the correspondence of the material proceeded from the quarry wastes to the regulations, a comparison of the direct costs of the products obtained with traditional materials and of the products obtained using the quarry wastes has been carried out. In the end, the advantages, direct and indirect, deriving from re-using these materials have been investigated.

To start with, a deep analysis of the situation in the area of the Luserna Basin has been carried out. The study includes not only the data of the production in the last decade but also the whole information of the physical – mechanical character of the lithoid, and mineralogical composition of

The mining basin

[Map of the mining basin]
With these data, a comparison between two alternatives has been created; the two possibilities considered can be described as follows:

- **standard solution**: it proposes the prosecution of the actual statement with dump and occasional re-using of the quarry wastes
- **innovative solution**: it considers to change completely the destination of the wastes produced in the cultivation in order to carry out a systematic treatment for re-using

A real economic study\(^1\), the **CostBenefitAnalysis**, has been applied for a period of 10 years, starting from the 2002 (at the end of this period the dumps used nowadays will be exhausted). The objective of the CostBenefitAnalysis (which is a monetary evaluation method where all the advantages and disadvantages of a project are considered and translated in monetary units) is to determine the best choice between different alternatives in order to supply the biggest **net social benefit**.

The alternatives considered have been:

- prosecution of the actual state: dump + sale of rip-rap + transfer of materials for filling
- breaker proposal: crushing + sales of the grinded products + sales of rip-rap

The analysis carried out could properly considered as an **Environmentally Adjusted CostBenefitAnalysis**; in fact the in the two alternatives compared it is contemplate the passage from creating of a damage (prosecution with the actual state) to producing a new resource.

For the first alternative, the output of the analysis is described in the table 1 (values are expressed in thousands of Euro).

Tab. 1 Prosecution with the actual statement

The table below shows the costs and benefits for each year from 2002 to 2012.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTS</td>
<td></td>
</tr>
<tr>
<td>Cost for the material in the dump</td>
<td>206.6</td>
</tr>
<tr>
<td>Cost for activating the dump</td>
<td>15.5</td>
</tr>
<tr>
<td>Cost of material for filling</td>
<td>13.9</td>
</tr>
<tr>
<td>Total costs</td>
<td>236</td>
</tr>
<tr>
<td>BENEFITS</td>
<td></td>
</tr>
<tr>
<td>Sale of rip-rap</td>
<td>591</td>
</tr>
<tr>
<td>Total benefits</td>
<td>591</td>
</tr>
</tbody>
</table>

\(^1\) See also: BADINO V., MONDINI G., BUZIO S., PRIZZON F. (1998) – Evaluation of the technical-economic aspects of the project for the increase of the Monte Cros quarry proposed by the company Italcementi S.p.A., Polytechnic of Turin – DIGET (internal working paper).

\(^2\) See also: CLERICI C. (2002) – Dispensation of the class of Rescue of the Secondary Raw Materials, Polytechnic of Turin – DIGET.
The labour

- The benefits obtainable are connected with the sale values of the materials coming out from the plant.

The project of the plant should make provision of:
- A shol (A);
- An extracting pre-screening feeder (B);
- An impactor (C);
- Three vibrating screens (D, E, F);
- Eleven conveyors with different length.

The results obtained from the second alternative are shown in table 2 (values are expressed in thousands of Euro).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Investment cost</td>
<td>140</td>
</tr>
<tr>
<td>Energy cost</td>
<td>22</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>51.4</td>
</tr>
<tr>
<td>Wear cost</td>
<td>25.7</td>
</tr>
<tr>
<td>Labour cost</td>
<td>31</td>
</tr>
<tr>
<td>Transport quarry-plant cost</td>
<td>258.2</td>
</tr>
<tr>
<td>Total costs</td>
<td>140</td>
<td>528.3</td>
<td>528.3</td>
<td>528.3</td>
<td>528.3</td>
<td>388.3</td>
<td>388.3</td>
<td>388.3</td>
<td>388.3</td>
<td>388.3</td>
<td>388.3</td>
</tr>
<tr>
<td>BENEFITS</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Materials sale</td>
<td></td>
</tr>
<tr>
<td>1) 30-60</td>
<td>153.4</td>
</tr>
<tr>
<td>2) 18-30</td>
<td>164.7</td>
</tr>
<tr>
<td>3) 12-18</td>
<td>123.9</td>
</tr>
<tr>
<td>4) 8-12</td>
<td>96</td>
</tr>
<tr>
<td>5) 4-8</td>
<td>151.8</td>
</tr>
<tr>
<td>6) <4</td>
<td>151.8</td>
</tr>
<tr>
<td>Sale of rip-rap</td>
<td>591</td>
</tr>
<tr>
<td>Total benefits</td>
<td>591</td>
<td>1435.8</td>
</tr>
<tr>
<td>CASH FLOW: benefits-costs (Ft)</td>
<td>454</td>
<td>907.4</td>
<td>907.4</td>
<td>907.4</td>
<td>907.4</td>
<td>1047.4</td>
<td>1047.4</td>
<td>1047.4</td>
<td>1047.4</td>
<td>1047.4</td>
<td>1047.4</td>
</tr>
</tbody>
</table>

Tab. 2 Crushed proposal

3. RESULTS
The criteria applied for the economic evaluation of the investments considered is the Net Present Value (NPV). It represents the most used indicator in this kind of monetary analysis.
For choosing between different alternative projects, you have to consider that the higher is the NPV, the bigger is the final net benefit obtainable from the operation.

\[
NPV = \sum_{t=1}^{10} \frac{F_t}{(1+i)^t}
\]

F_t: final cash flow for every year (difference between the total benefits and the total costs for every year)

i: discount rate;

\(t \): year considered in the project life

A comparison between the two alternatives can be done diagramming the NPV state related to the variation of the discount rate (between 0,1% and 5%).

NPV 1: Net Present Value state for the prosecution according to the actual condition

NPV 2: Net Present Value state of the crusher proposal

Fig. 3 NPV comparison for the two alternatives considered

Two are the main consideration which can be done:

- The Net Present Value curve of the crushed alternative is always higher than that of the prosecution with the actual condition. Even varying the discount rate the final result does not change: the proposal of a shatter plant still wins.

- Analysing the state of the NPV when the discount rate tends to 0, a few interesting considerations from the point of view of the environment economy can be done. To adopt a discount rate very low means to make no choice between the present and the future. In the case of environmental goods and services, the previous sentence is the same as saying that no generation can consider itself more important than the future generation. It is very important, therefore, to verify that just for a discount rate tending to 0 the crushed proposal supplies a NPV higher than the hypothesis of the prosecution with the actual condition.

4. REFERENCES

ANTONINI E. (2001), Residui da costruzione e demolizione: una risorsa ambientalmente sostenibile, Franco Angeli, Milano

COMMON M. and PERRINGS C. (1992), Towards and ecological economics of sustainability, Ecological Econ. 6: 7-34.

FUSCO GIRARD L., NIJKAMP P. (1997), Le valutazioni per lo sviluppo sostenibile della città e del territorio, Franco Angeli, Milano

FUSCO GIRARD L., FORTE B.(2000), Città sostenibile e sviluppo umano, Franco Angeli, Milano

MCKENNEY D. (1998), Resource economists should do more cost analysis and less benefit analysis, CRES, ANU, Canberra

MISHAM (1974), Analisi Costi Benefici, ETAS libri, Milano
RIZZO F. (1999), Valore e valutazione, Franco Angeli, Milano
ROSCELLI R. (1991), Misurare nell’incertezza, Celid, Torino
SYMOND, ARGUS, COWI and PRC BOUWCENTRUM (1999), Construction and Demolition waste management practices and their economic impact, Final Report
STELLIN G., ROSATO P. (1998), La valutazione economica dei beni ambientali, CittàStudi Edizioni, Torino