Climate changes predicted for Iceland in the 21st century will likely lead to the most extreme environmental changes in the country since the settlement in the 9th century. Glaciers and ice caps have been in rapid retreat over the past 15–20 years and the rate of shrinkage is predicted to increase in the coming decades, leading to nearly complete disappearance of the glaciers within 150–200 years. These changes will greatly affect glacial rivers and groundwater systems and as well as hydropower plants, roads and bridges and other infrastructure in the country. Because of their importance for various sectors of society, the glacier changes need to be closely monitored and near-future predictions of glacier variations must be updated on a regular basis. Complete melting of all ice caps and glaciers in Iceland would contribute about 1 cm to worldwide rise in sea level.

The lidar mapping project

Detailed mapping of the surface of glaciers and ice caps in Iceland was initiated during the International Polar Year 2007–2009 and completed in the summer of 2012. The new surface maps will serve as a benchmark for evaluation of current and future changes in ice volume and area extent. Together with DEM of Langjökull from 2007, all glaciers in Iceland >10 km² and several smaller glaciers have been mapped by lidar in the period 2007–2012, leaving <150 km² of small glaciers and cirque glaciers unsurveyed. The total surveyed area was >15 000 km², including proglacial areas and repeated mapping of some areas. The glaciers and ice caps surveyed are of different sizes and types: Vatnajökull is the largest ice cap in Europe, hosting subglacial volcanoes and geothermal systems, which cause regular jökulhlaups (glacial outbursts of hot water). Although Langjökull is up to 750 m thick, it lies entirely below 1400 m elevation and if 21st century climate develops as projected in recent studies it is likely that only ~10% of its volume will be left in 2100. Hofsjökull is a 860 km²/2000 km³ ice cap in central Iceland, where mass–balance measurements have been carried out since 1988. The results show negative mass balance every year over the past 18 years and the ice cap has lost approximately 10% of its volume since 1995. Drangajökull is a 140 km² ice cap in NW-Iceland that survives below 1500 m elevation under cool conditions close to the Arctic Circle, which lies just north of Iceland. Snæfellsjökull is a small ice cap on the summit of a 1450 m high volcano that is clearly visible from the capital region of Reykjavik in good weather. The area of the glacier has shrunk from 22 km² to 10 km² over the past century. The lidar scanning of the surface of the glacier-capped volcano Eyjafjallajökull revealed the morphology of channels formed in the ice surface, when meltwater floods and lahars (volcanic debris flows) descended down the mountainside during the 2010 eruption. And measurements of the surface of the Myrdalsjökull ice cap carried out in the summer of 2010 and repeated to some extent in 2011, allowed estimation of the volume of floodwater released from a subglacial lake in July 2011. The flood swept away a bridge on the motorway around Iceland. This caldera is one of several located within the caldera of the subglacial volcano Katla, where an isostatic uplift could occur in the near future.

The lidar mapping project is an Icelandic contribution to ongoing research on the effects of global warming on Arctic/Sub-Arctic ice caps and mountain glaciers worldwide. The maps will be useful for research on glacier surges and on isostatic uplift due to decreasing lithospheric load. They can also be useful for comparison with satellite-based measurements of glacial surfaces. Mapping of glaciers in the vikings and subglacial lakes (like Grimsvötn and Skáftafell in Vatnajökull) and marginal lakes (f.ex. Grænálon) is of importance for the study of jökulhlaups and for investigations of changes in the courses of glacial rivers. The lidar lidar mapping project has successfully recorded on the volume decrease of some ice caps in Iceland over the past few decades, by comparison with older maps and satellite measurements. The lidar maps will be available in the public domain, open for use in map production and scientific research.

Thinning of Snæfellsjökull and Hofsjökull

Acknowledgments

The lidar mapping of glaciers in Iceland has been supported by the Research Fund of Iceland, the Landvirkjun (the National Power Company of Iceland) Research Fund, the Icelandic Road Administration, the Reykjavik Energy Environmental and Energy Research Fund, the National Land Survey of Iceland (Landmeiningarlýsing), the Klima- og Luftforsøgene (Klf.) research fund of the Nordic Council of Ministers, the Vatnajökull National Park and the organization Friends of Vatnajökull. The mapping of Langjökull was carried out in collaboration with the Scott Polar Research Institute Cambridge (SPRI), UK. The mapping was organized in collaboration with the Institute of Navigation, University of Stuttgart, Germany. SPRI/HS/DEM were made available by the SPRI’s IPY’s project.